Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
- Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
- Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Roland Langrock, 2011. "Some applications of nonlinear and non-Gaussian state--space modelling by means of hidden Markov models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2955-2970, March.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
- Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
- Fernández-Villaverde, J. & Rubio-RamÃrez, J.F. & Schorfheide, F., 2016.
"Solution and Estimation Methods for DSGE Models,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724,
Elsevier.
- Rubio-RamÃrez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
- Jesús Fernández-Villaverde & Juan F. Rubio Ramírez & Frank Schorfheide, 2016. "Solution and Estimation Methods for DSGE Models," NBER Working Papers 21862, National Bureau of Economic Research, Inc.
- Jesus Fernandez-Villaverde & Juan Rubio-RamÃrez & Frank Schorfheide, 2015. "Solution and Estimation Methods for DSGE Models," PIER Working Paper Archive 15-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2015.
- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
- Karamé, Frédéric, 2018.
"A new particle filtering approach to estimate stochastic volatility models with Markov-switching,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
- Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
- Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
- Chris Sherlock, 2016. "Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 869-884, September.
- Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Neil Shephard, 2013.
"Martingale unobserved component models,"
Economics Papers
2013-W01, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 644, University of Oxford, Department of Economics.
- Arnaud Doucet & Neil Shephard, 2012.
"Robust inference on parameters via particle filters and sandwich covariance matrices,"
Economics Papers
2012-W05, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Arnaud Doucet, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Series Working Papers 606, University of Oxford, Department of Economics.
- Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
- Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
- Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
- Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
- Thomas Lux, 2022. "Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 451-477, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2015-11-07 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1511.01707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.