Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-021-10155-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nils Bertschinger & Iurii Mozzhorin, 2021. "Bayesian estimation and likelihood-based comparison of agent-based volatility models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 173-210, January.
- Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017.
"Bayesian estimation of agent-based models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
- Jakob Grazzini & Matteo G. Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," LABORatorio R. Revelli Working Papers Series 145, LABORatorio R. Revelli, Centre for Employment Studies.
- Jakob Grazzini & Matteo Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," Economics Papers 2015-W12, Economics Group, Nuffield College, University of Oxford.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
- Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
- Lux, Thomas, 1997. "Time variation of second moments from a noise trader/infection model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 1-38, November.
- Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008.
"Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
- Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2005. "Time-variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Economics Working Papers 2005-14, Christian-Albrechts-University of Kiel, Department of Economics.
- Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2006. "Time-variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Economics Working Papers 2006-16, Christian-Albrechts-University of Kiel, Department of Economics.
- Franke, Reiner & Westerhoff, Frank, 2012.
"Structural stochastic volatility in asset pricing dynamics: Estimation and model contest,"
Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
- Franke, Reiner & Westerhoff, Frank, 2011. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," BERG Working Paper Series 78, Bamberg University, Bamberg Economic Research Group.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
- Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sangkwon Kim & Jisang Lyu & Wonjin Lee & Eunchae Park & Hanbyeol Jang & Chaeyoung Lee & Junseok Kim, 2024. "A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2069-2086, May.
- Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
- Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
- Lux, Thomas, 2024. "Lack of identification of parameters in a simple behavioral macroeconomic model," Economics Working Papers 2024-02, Christian-Albrechts-University of Kiel, Department of Economics.
- Park, Daehyeon & Ryu, Doojin & Webb, Robert I., 2024. "Fear of missing out and market stability: A networked minority game approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
- Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
- Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
- Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Nils Bertschinger & Iurii Mozzhorin, 2021. "Bayesian estimation and likelihood-based comparison of agent-based volatility models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 173-210, January.
- Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
- Emna Mnif & Anis Jarboui & M. Kabir Hassan & Khaireddine Mouakhar, 2020.
"Big data tools for Islamic financial analysis,"
Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 10-21, January.
- E. Mnif & A. Jarboui & M.K. Hassan & K. Mouakhar, 2020. "Big Data Tools for Islamic Financial Analysis," Post-Print hal-04457135, HAL.
- Kukacka, Jiri & Barunik, Jozef, 2017.
"Estimation of financial agent-based models with simulated maximum likelihood,"
Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
- Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
- Zhenxi Chen & Thomas Lux, 2018.
"Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach,"
Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
- Zhenxi, Chen & Lux, Thomas, 2015. "Estimation of sentiment effects in financial markets: A simulated method of moments approach," FinMaP-Working Papers 37, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
- Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
- Kukacka, Jiri & Sacht, Stephen, 2023.
"Estimation of heuristic switching in behavioral macroeconomic models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Kukacka, Jiri & Sacht, Stephen, 2021. "Estimation of Heuristic Switching in Behavioral Macroeconomic Models," Economics Working Papers 2021-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Farmer, J. Doyne & Dyer, Joel & Cannon, Patrick & Schmon, Sebastian, 2022.
"Black-box Bayesian inference for economic agent-based models,"
INET Oxford Working Papers
2022-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Joel Dyer & Patrick Cannon & J. Doyne Farmer & Sebastian Schmon, 2022. "Black-box Bayesian inference for economic agent-based models," Papers 2202.00625, arXiv.org.
- Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
- He, Xue-Zhong & Li, Youwei, 2015.
"Testing of a market fraction model and power-law behaviour in the DAX 30,"
Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
- Xue-Zhong He & Youwei Li, 2015. "Testing of a Market Fraction Model and Power-Law Behaviour in the Dax 30," Research Paper Series 354, Quantitative Finance Research Centre, University of Technology, Sydney.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chen, Zhenxi & Zheng, Huanhuan, 2022. "Herding in the Chinese and US stock markets: Evidence from a micro-founded approach," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 597-604.
More about this item
Keywords
Agents-based models; Makov chain Monte Carlo; Particle filter;All these keywords.
JEL classification:
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:60:y:2022:i:2:d:10.1007_s10614-021-10155-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.