IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1510.01675.html
   My bibliography  Save this paper

What's in a ball? Constructing and characterizing uncertainty sets

Author

Listed:
  • Thomas Kruse
  • Judith C. Schneider
  • Nikolaus Schweizer

Abstract

In the presence of model risk, it is well-established to replace classical expected values by worst-case expectations over all models within a fixed radius from a given reference model. This is the "robustness" approach. We show that previous methods for measuring this radius, e.g. relative entropy or polynomial divergences, are inadequate for reference models which are moderately heavy-tailed such as lognormal models. Worst cases are either infinitely pessimistic, or they rule out the possibility of fat-tailed "power law" models as plausible alternatives. We introduce a new family of divergence measures which captures intermediate levels of pessimism.

Suggested Citation

  • Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2015. "What's in a ball? Constructing and characterizing uncertainty sets," Papers 1510.01675, arXiv.org.
  • Handle: RePEc:arx:papers:1510.01675
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1510.01675
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Sargent, Thomas J., 2011. "Robustness and ambiguity in continuous time," Journal of Economic Theory, Elsevier, vol. 146(3), pages 1195-1223, May.
    2. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    3. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    4. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    7. Thomas Breuer & Imre Csiszar, 2013. "Measuring Model Risk," Papers 1301.4832, arXiv.org.
    8. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing, 2018. "Essays on model uncertainty in financial models," Other publications TiSEM 202cd910-7ef1-4db4-94ae-d, Tilburg University, School of Economics and Management.
    2. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2019. "Technical Note—The Joint Impact of F -Divergences and Reference Models on the Contents of Uncertainty Sets," Operations Research, INFORMS, vol. 67(2), pages 428-435, March.
    3. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    4. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    5. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2021. "A Toolkit for Robust Risk Assessment Using F -Divergences," Management Science, INFORMS, vol. 67(10), pages 6529-6552, October.
    6. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    7. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    10. Roberto Baviera & Giulia Bianchi, 2019. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Papers 1902.06623, arXiv.org, revised Dec 2019.
    11. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    12. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    13. Roberto Baviera & Giulia Bianchi, 2021. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Journal of Global Optimization, Springer, vol. 81(2), pages 469-491, October.
    14. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    15. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    16. Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
    17. Spiridon Penev & Pavel V. Shevchenko & Wei Wu, 2021. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," Papers 2108.02633, arXiv.org.
    18. Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
    19. Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
    20. Amarante, Massimiliano & Ghossoub, Mario, 2021. "Aggregation of opinions and risk measures," Journal of Economic Theory, Elsevier, vol. 196(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1510.01675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.