IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i2p428-435.html
   My bibliography  Save this article

Technical Note—The Joint Impact of F -Divergences and Reference Models on the Contents of Uncertainty Sets

Author

Listed:
  • Thomas Kruse

    (Department of Mathematics, University of Duisburg-Essen, D-45127 Essen, Germany;)

  • Judith C. Schneider

    (Finance Center Münster, University of Münster, D-48143 Münster, Germany;)

  • Nikolaus Schweizer

    (Department of Econometrics and Operations Research, Tilburg University, NL-5000 LE Tilburg, Netherlands)

Abstract

In the presence of model risk, it is well established to replace classical expected values with worst-case expectations over all models within a fixed radius from a given reference model. This is the “robustness” approach. For the class of F -divergences, we provide a careful assessment of how the interplay between reference model and divergence measure shapes the contents of uncertainty sets. We show that the classical divergences, relative entropy and polynomial divergences, are inadequate for reference models that are moderately heavy-tailed, such as lognormal models. Worst cases either are infinitely pessimistic or rule out the possibility of fat-tailed “power law” models as plausible alternatives. Moreover, we rule out the existence of a single F -divergence, which is appropriate regardless of the reference model. Thus, the reference model should not be neglected when settling on any particular divergence measure in the robustness approach.

Suggested Citation

  • Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2019. "Technical Note—The Joint Impact of F -Divergences and Reference Models on the Contents of Uncertainty Sets," Operations Research, INFORMS, vol. 67(2), pages 428-435, March.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:428-435
    DOI: 10.1287/opre.2018.1807
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1807
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    2. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    3. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    4. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2015. "What's in a ball? Constructing and characterizing uncertainty sets," Papers 1510.01675, arXiv.org.
    2. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2021. "A Toolkit for Robust Risk Assessment Using F -Divergences," Management Science, INFORMS, vol. 67(10), pages 6529-6552, October.
    3. Li, Jing, 2018. "Essays on model uncertainty in financial models," Other publications TiSEM 202cd910-7ef1-4db4-94ae-d, Tilburg University, School of Economics and Management.
    4. Spiridon Penev & Pavel V. Shevchenko & Wei Wu, 2021. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," Papers 2108.02633, arXiv.org.
    5. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    6. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    7. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    8. Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
    9. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    10. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    11. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    12. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    13. Roberto Baviera & Giulia Bianchi, 2019. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Papers 1902.06623, arXiv.org, revised Dec 2019.
    14. Sebastian Jaimungal & Silvana M. Pesenti & Leandro S'anchez-Betancourt, 2022. "Minimal Kullback-Leibler Divergence for Constrained L\'evy-It\^o Processes," Papers 2206.14844, arXiv.org, revised Aug 2022.
    15. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    16. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    17. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    18. Roberto Baviera & Giulia Bianchi, 2021. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Journal of Global Optimization, Springer, vol. 81(2), pages 469-491, October.
    19. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    20. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:428-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.