IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.06623.html
   My bibliography  Save this paper

Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach

Author

Listed:
  • Roberto Baviera
  • Giulia Bianchi

Abstract

In this paper we consider the worst-case model risk approach described in Glasserman and Xu (2014). Portfolio selection with model risk can be a challenging operational research problem. In particular, it presents an additional optimisation compared to the classical one. We find the analytical solution for the optimal mean-variance portfolio selection in the worst-case scenario approach. In the minimum-variance case, we prove that the analytical solution is significantly different from the one found numerically by Glasserman and Xu (2014) and that model risk reduces to an estimation risk. A detailed numerical example is provided.

Suggested Citation

  • Roberto Baviera & Giulia Bianchi, 2019. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Papers 1902.06623, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1902.06623
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.06623
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    2. Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
    3. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    4. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    5. Henry Lam, 2016. "Robust Sensitivity Analysis for Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1248-1275, November.
    6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    7. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    8. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Baviera & Giulia Bianchi, 2021. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Journal of Global Optimization, Springer, vol. 81(2), pages 469-491, October.
    2. Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
    3. Spiridon Penev & Pavel V. Shevchenko & Wei Wu, 2021. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," Papers 2108.02633, arXiv.org.
    4. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    5. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    7. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    8. Sebastian Jaimungal & Silvana M. Pesenti & Leandro S'anchez-Betancourt, 2022. "Minimal Kullback-Leibler Divergence for Constrained L\'evy-It\^o Processes," Papers 2206.14844, arXiv.org, revised Aug 2022.
    9. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    10. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    11. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    12. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    13. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    14. Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
    15. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    16. Yu Feng, 2019. "Non-Parametric Robust Model Risk Measurement with Path-Dependent Loss Functions," Papers 1903.00590, arXiv.org.
    17. Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
    18. Amarante, Massimiliano & Ghossoub, Mario, 2021. "Aggregation of opinions and risk measures," Journal of Economic Theory, Elsevier, vol. 196(C).
    19. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2019. "Technical Note—The Joint Impact of F -Divergences and Reference Models on the Contents of Uncertainty Sets," Operations Research, INFORMS, vol. 67(2), pages 428-435, March.
    20. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.06623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.