Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
- Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
- Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
- Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
- Henry Lam, 2016. "Robust Sensitivity Analysis for Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1248-1275, November.
- Gilboa, Itzhak & Schmeidler, David, 1989.
"Maxmin expected utility with non-unique prior,"
Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
- Gilboa, Itzhak & Schmeidler, David, 1986. "Maxmin Expected Utility with a Non-Unique Prior," Foerder Institute for Economic Research Working Papers 275405, Tel-Aviv University > Foerder Institute for Economic Research.
- Itzhak Gilboa & David Schmeidler, 1989. "Maxmin Expected Utility with Non-Unique Prior," Post-Print hal-00753237, HAL.
- Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
- Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roberto Baviera & Giulia Bianchi, 2021. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Journal of Global Optimization, Springer, vol. 81(2), pages 469-491, October.
- Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
- Spiridon Penev & Pavel V. Shevchenko & Wei Wu, 2021. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," Papers 2108.02633, arXiv.org.
- Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
- Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
- Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021.
"Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models,"
Risks, MDPI, vol. 9(1), pages 1-20, January.
- Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlogl, 2018. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Research Paper Series 395, Quantitative Finance Research Centre, University of Technology, Sydney.
- Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlogl, 2018. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Papers 1810.09112, arXiv.org.
- Sebastian Jaimungal & Silvana M. Pesenti & Leandro S'anchez-Betancourt, 2022. "Minimal Kullback-Leibler Divergence for Constrained L\'evy-It\^o Processes," Papers 2206.14844, arXiv.org, revised Aug 2022.
- Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
- Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024.
"Robust distortion risk measures,"
Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2022. "Robust Distortion Risk Measures," Papers 2205.08850, arXiv.org, revised Mar 2023.
- Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
- Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
- Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
- Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
- Yu Feng, 2019. "Non-Parametric Robust Model Risk Measurement with Path-Dependent Loss Functions," Papers 1903.00590, arXiv.org.
- Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
- Amarante, Massimiliano & Ghossoub, Mario, 2021. "Aggregation of opinions and risk measures," Journal of Economic Theory, Elsevier, vol. 196(C).
- Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2019. "Technical Note—The Joint Impact of F -Divergences and Reference Models on the Contents of Uncertainty Sets," Operations Research, INFORMS, vol. 67(2), pages 428-435, March.
- Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2019-02-25 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.06623. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.