IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.06565.html
   My bibliography  Save this paper

Calibration of Distributionally Robust Empirical Optimization Models

Author

Listed:
  • Jun-Ya Gotoh
  • Michael Jong Kim
  • Andrew E. B. Lim

Abstract

We study the out-of-sample properties of robust empirical optimization problems with smooth $\phi$-divergence penalties and smooth concave objective functions, and develop a theory for data-driven calibration of the non-negative "robustness parameter" $\delta$ that controls the size of the deviations from the nominal model. Building on the intuition that robust optimization reduces the sensitivity of the expected reward to errors in the model by controlling the spread of the reward distribution, we show that the first-order benefit of ``little bit of robustness" (i.e., $\delta$ small, positive) is a significant reduction in the variance of the out-of-sample reward while the corresponding impact on the mean is almost an order of magnitude smaller. One implication is that substantial variance (sensitivity) reduction is possible at little cost if the robustness parameter is properly calibrated. To this end, we introduce the notion of a robust mean-variance frontier to select the robustness parameter and show that it can be approximated using resampling methods like the bootstrap. Our examples show that robust solutions resulting from "open loop" calibration methods (e.g., selecting a $90\%$ confidence level regardless of the data and objective function) can be very conservative out-of-sample, while those corresponding to the robustness parameter that optimizes an estimate of the out-of-sample expected reward (e.g., via the bootstrap) with no regard for the variance are often insufficiently robust.

Suggested Citation

  • Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1711.06565
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.06565
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    2. Raman Uppal & Tan Wang, 2003. "Model Misspecification and Underdiversification," Journal of Finance, American Finance Association, vol. 58(6), pages 2465-2486, December.
    3. Jun Liu, 2005. "An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 131-164.
    4. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    5. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    6. David B. Brown & Enrico De Giorgi & Melvyn Sim, 2012. "Aspirational Preferences and Their Representation by Risk Measures," Management Science, INFORMS, vol. 58(11), pages 2095-2113, November.
    7. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    8. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    9. Andrew E. B. Lim & J. George Shanthikumar, 2007. "Relative Entropy, Exponential Utility, and Robust Dynamic Pricing," Operations Research, INFORMS, vol. 55(2), pages 198-214, April.
    10. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    11. Dirk Bergemann & Karl Schlag, 2012. "Robust Monopoly Pricing," World Scientific Book Chapters, in: Robust Mechanism Design The Role of Private Information and Higher Order Beliefs, chapter 13, pages 417-441, World Scientific Publishing Co. Pte. Ltd..
    12. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    13. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    14. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    15. Henry Lam, 2016. "Robust Sensitivity Analysis for Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1248-1275, November.
    16. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    17. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    18. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    19. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimian, Hamed & Bayraksan, Güzin & Homem-de-Mello, Tito, 2019. "Controlling risk and demand ambiguity in newsvendor models," European Journal of Operational Research, Elsevier, vol. 279(3), pages 854-868.
    2. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    2. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    3. Agarwal, Vikas & Arisoy, Y. Eser & Naik, Narayan Y., 2017. "Volatility of aggregate volatility and hedge fund returns," Journal of Financial Economics, Elsevier, vol. 125(3), pages 491-510.
    4. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    5. Jang, Bong-Gyu & Lee, Seungkyu & Lim, Byung Hwa, 2016. "Robust consumption and portfolio rules with time-varying model confidence," Finance Research Letters, Elsevier, vol. 18(C), pages 342-352.
    6. repec:esx:essedp:770 is not listed on IDEAS
    7. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    8. Philipp Karl ILLEDITSCH, 2009. "Ambiguous Information, Risk Aversion, and Asset Pricing," 2009 Meeting Papers 802, Society for Economic Dynamics.
    9. Meyer, Steffen & Uhr, Charline, 2024. "Ambiguity and private investors’ behavior after forced fund liquidations," Journal of Financial Economics, Elsevier, vol. 156(C).
    10. Philipp K. Illeditsch & Jayant V. Ganguli & Scott Condie, 2021. "Information Inertia," Journal of Finance, American Finance Association, vol. 76(1), pages 443-479, February.
    11. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    12. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    13. Loïc Berger & Louis Eeckhoudt, 2020. "Risk, Ambiguity, And The Value Of Diversification," Working Papers hal-02910906, HAL.
    14. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    15. Guo, Liang, 2013. "Determinants of credit spreads: The role of ambiguity and information uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 279-297.
    16. Loïc Berger & Louis Eeckhoudt, 2021. "Risk, Ambiguity, and the Value of Diversification," Management Science, INFORMS, vol. 67(3), pages 1639-1647, March.
    17. Gonçalo Faria & João Correia-da-Silva, 2012. "The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices," Annals of Finance, Springer, vol. 8(4), pages 507-531, November.
    18. Taboga, Marco, 2005. "Portfolio selection with two-stage preferences," Finance Research Letters, Elsevier, vol. 2(3), pages 152-164, September.
    19. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    20. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    21. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.06565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.