IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1505.03030.html
   My bibliography  Save this paper

On the Exact Simulation of (Jump) Diffusion Bridges

Author

Listed:
  • Murray Pollock

Abstract

In this paper we outline methodology to efficiently simulate (jump) diffusion bridge sample paths without discretisation error. We achieve this by considering the simulation of conditioned (jump) diffusion bridge sample paths in light of recent work developing a mathematical framework for simulating finite dimensional sample path skeletons (which flexibly characterise the entirety of sample paths).

Suggested Citation

  • Murray Pollock, 2015. "On the Exact Simulation of (Jump) Diffusion Bridges," Papers 1505.03030, arXiv.org.
  • Handle: RePEc:arx:papers:1505.03030
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1505.03030
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "A Factorisation of Diffusion Measure and Finite Sample Path Constructions," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 85-104, March.
    2. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    2. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
    2. Herrmann, Samuel & Massin, Nicolas, 2023. "Exact simulation of the first passage time through a given level of jump diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 553-576.
    3. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    4. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    5. Flávio B. Gonçalves & Gareth O. Roberts, 2014. "Exact Simulation Problems for Jump-Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 907-930, December.
    6. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    7. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    8. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
    9. Krzysztof Łatuszyński & Gareth O. Roberts, 2013. "CLTs and Asymptotic Variance of Time-Sampled Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 237-247, March.
    10. Yehuda Arav & Eyal Fattal & Ziv Klausner, 2022. "Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    11. Étoré Pierre & Martinez Miguel, 2013. "Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process," Monte Carlo Methods and Applications, De Gruyter, vol. 19(1), pages 41-71, March.
    12. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.
    13. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    14. Jan Baldeaux & Eckhard Platen, 2012. "Computing Functionals of Multidimensional Diffusions via Monte Carlo Methods," Papers 1204.1126, arXiv.org.
    15. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    16. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    17. Rudiger Frey & Verena Kock, 2021. "Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics," Papers 2109.11403, arXiv.org, revised Sep 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1505.03030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.