IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v19y2013i1p41-71n3.html
   My bibliography  Save this article

Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process

Author

Listed:
  • Étoré Pierre

    (Laboratoire Jean Kuntzmann, Tour IRMA 51, rue des Mathématiques, 38041 Grenoble Cedex 9, France)

  • Martinez Miguel

    (Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris-Est, UMR 8050, 5 Bld Descartes, Champs-sur-marne, 77454 Marne-la-Vallée Cedex 2, France)

Abstract

In this article we extend the exact simulation methods of Beskos, Papaspiliopoulos and Roberts [Bernoulli 12 (2006), 1077–1098] to the solutions of one-dimensional stochastic differential equations involving the local time of the unknown process at point zero. In order to perform the method we compute the law of the skew Brownian motion with drift. The method presented in this article covers the case where the solution of the SDE with local time corresponds to a divergence form operator with a discontinuous coefficient at zero. Numerical examples are shown to illustrate the method and the performances are compared with more traditional discretization schemes.

Suggested Citation

  • Étoré Pierre & Martinez Miguel, 2013. "Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process," Monte Carlo Methods and Applications, De Gruyter, vol. 19(1), pages 41-71, March.
  • Handle: RePEc:bpj:mcmeap:v:19:y:2013:i:1:p:41-71:n:3
    DOI: 10.1515/mcma-2013-0002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2013-0002
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2013-0002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "A Factorisation of Diffusion Measure and Finite Sample Path Constructions," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 85-104, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    2. Murray Pollock, 2015. "On the Exact Simulation of (Jump) Diffusion Bridges," Papers 1505.03030, arXiv.org.
    3. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    4. Krzysztof Łatuszyński & Gareth O. Roberts, 2013. "CLTs and Asymptotic Variance of Time-Sampled Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 237-247, March.
    5. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.
    6. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    7. Jan Baldeaux & Eckhard Platen, 2012. "Computing Functionals of Multidimensional Diffusions via Monte Carlo Methods," Papers 1204.1126, arXiv.org.
    8. Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
    9. Herrmann, Samuel & Massin, Nicolas, 2023. "Exact simulation of the first passage time through a given level of jump diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 553-576.
    10. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:19:y:2013:i:1:p:41-71:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.