IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v07y2020i01ns2424786320500036.html
   My bibliography  Save this article

Willow tree algorithms for pricing VIX derivatives under stochastic volatility models

Author

Listed:
  • Changfu Ma

    (School of Mathematical Sciences, Tongji University, Shanghai 200092, P. R. China)

  • Wei Xu

    (#x2020;Department of Mathematics, Ryerson University, Toronto, ON, Canada)

  • Yue Kuen Kwok

    (#x2021;Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, P. R. China)

Abstract

VIX futures and options are the most popular contracts traded in the Chicago Board Options Exchange. The bid-ask spreads of traded VIX derivatives remain to be wide, possibly due to the lack of reliable pricing models. In this paper, we consider pricing VIX derivatives under the consistent model approach, which considers joint modeling of the dynamics of the S&P index and its instantaneous variance. Under the affine jump-diffusion formulation with stochastic volatility, analytic integral formulas can be derived to price VIX futures and options. However, these integral formulas invariably involve Fourier inversion integrals with cumbersome hyper-geometric functions, thus posing various challenges in numerical evaluation. We propose a unified numerical approach based on the willow tree algorithms to price VIX derivatives under various common types of joint process of the S&P index and its instantaneous variance. Given the analytic form of the characteristic function of the instantaneous variance of the S&P index process in the Fourier domain, we apply the fast Fourier transform algorithm to obtain the transition density function numerically in the real domain. We then construct the willow tree that approximates the dynamics of the instantaneous variance process up to the fourth order moment. Our comprehensive numerical tests performed on the willow tree algorithms demonstrate high level of numerical accuracy, runtime efficiency and reliability for pricing VIX futures and both European and American options under the affine model and 3/2-model. We also examine the implied volatility smirks and the term structures of the implied skewness of VIX options.

Suggested Citation

  • Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.
  • Handle: RePEc:wsi:ijfexx:v:07:y:2020:i:01:n:s2424786320500036
    DOI: 10.1142/S2424786320500036
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/abs/10.1142/S2424786320500036
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786320500036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Yingzi Zhu & Jin E. Zhang, 2007. "Variance Term Structure And Vix Futures Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 111-127.
    4. Wei Xu & Zhiwu Hong & Chenxiang Qin, 2013. "A new sampling strategy willow tree method with application to path-dependent option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 861-872, May.
    5. Andrea Barletta & Elisa Nicolato, 2018. "Orthogonal expansions for VIX options under affine jump diffusions," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 951-967, June.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Yueh‐Neng Lin, 2007. "Pricing VIX futures: Evidence from integrated physical and risk‐neutral probability measures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(12), pages 1175-1217, December.
    8. Bing Dong & Wei Xu & Yue Kuen Kwok, 2019. "Willow tree algorithms for pricing Guaranteed Minimum Withdrawal Benefits under jump-diffusion and CEV models," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1741-1761, October.
    9. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    10. Rama Cont & Thomas Kokholm, 2013. "A Consistent Pricing Model For Index Options And Volatility Derivatives," Post-Print hal-00801536, HAL.
    11. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    12. Xingguo Luo & Jin E. Zhang, 2012. "The Term Structure of VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(12), pages 1092-1123, December.
    13. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    14. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    15. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    16. Tianyi Wang & Yiwen Shen & Yueting Jiang & Zhuo Huang, 2017. "Pricing the CBOE VIX Futures with the Heston–Nandi GARCH Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(7), pages 641-659, July.
    17. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    18. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    19. Song‐Ping Zhu & Guang‐Hua Lian, 2012. "An analytical formula for VIX futures and its applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 166-190, February.
    20. Guang-Hua Lian & Song-Ping Zhu, 2013. "Pricing VIX options with stochastic volatility and random jumps," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(1), pages 71-88, May.
    21. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    22. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    23. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    24. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    2. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    3. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    4. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    5. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    6. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2020. "Pricing VIX derivatives with infinite‐activity jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 329-354, March.
    7. Sebastian A. Gehricke & Jin E. Zhang, 2020. "Modeling VXX under jump diffusion with stochastic long‐term mean," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1508-1534, October.
    8. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    9. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    10. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    11. Qiang Liu & Yuhan Jiao & Shuxin Guo, 2022. "GARCH pricing and hedging of VIX options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 1039-1066, June.
    12. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    13. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    14. Chen, Xiaoyi & Feng, JianFen & Wang, Tianyi, 2023. "Pricing VIX futures: A framework with random level shifts," Finance Research Letters, Elsevier, vol. 52(C).
    15. Yoo, Eun Gyu & Yoon, Sun-Joong, 2020. "CBOE VIX and Jump-GARCH option pricing models," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 839-859.
    16. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    17. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    18. Cheng, Hung-Wen & Chang, Li-Han & Lo, Chien-Ling & Tsai, Jeffrey Tzuhao, 2023. "Empirical performance of component GARCH models in pricing VIX term structure and VIX futures," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 122-142.
    19. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    20. Wei Lin & Shenghong Li & Shane Chern & Jin E. Zhang, 2019. "Pricing VIX derivatives with free stochastic volatility model," Review of Derivatives Research, Springer, vol. 22(1), pages 41-75, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:07:y:2020:i:01:n:s2424786320500036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.