IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1411.2835.html
   My bibliography  Save this paper

A continuous auction model with insiders and random time of information release

Author

Listed:
  • Jos'e Manuel Corcuera
  • Giulia Di Nunno
  • Gergely Farkas
  • Bernt {O}ksendal

Abstract

In a unified framework we study equilibrium in the presence of an insider having information on the signal of the firm value, which is naturally connected to the fundamental price of the firm related asset. The fundamental value itself is announced at a future random (stopping) time. We consider two cases. First when the release time of information is known to the insider and then when it is unknown also to her. Allowing for very general dynamics, we study the structure of the insider's optimal strategies in equilibrium and we discuss market efficiency. In particular, we show that in the case the insider knows the information release time, the market is fully efficient. In the case the insider does not know this random time, we see that there is an equilibrium with no full efficiency, but where the sensitivity of prices is decreasing in time according with the probability that the announcement time is greater than the current time. In other words, the prices become more and more stable as the announcement approaches.

Suggested Citation

  • Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
  • Handle: RePEc:arx:papers:1411.2835
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1411.2835
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luciano Campi & Umut Çetin, 2007. "Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling," Finance and Stochastics, Springer, vol. 11(4), pages 591-602, October.
    2. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    3. Back, Kerry, 1993. "Asymmetric Information and Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 435-472.
    4. Luciano Campi & Umut Çetin & Albina Danilova, 2013. "Equilibrium model with default and dynamic insider information," Finance and Stochastics, Springer, vol. 17(3), pages 565-585, July.
    5. Aase, Knut K. & Bjuland, Terje & Øksendal, Bernt, 2010. "Strategic Insider Trading Equilibrium: A Filter Theory Approach," Discussion Papers 2010/9, Norwegian School of Economics, Department of Business and Management Science.
    6. José Corcuera & Peter Imkeller & Arturo Kohatsu-Higa & David Nualart, 2004. "Additional utility of insiders with imperfect dynamical information," Finance and Stochastics, Springer, vol. 8(3), pages 437-450, August.
    7. Back, Kerry & Pedersen, Hal, 1998. "Long-lived information and intraday patterns," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 385-402, September.
    8. RenÈ Caldentey & Ennio Stacchetti, 2010. "Insider Trading With a Random Deadline," Econometrica, Econometric Society, vol. 78(1), pages 245-283, January.
    9. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    10. Campi, Luciano & Cetin, Umut & Danilova, Albina, 2013. "Explicit construction of a dynamic Bessel bridge of dimension 3," LSE Research Online Documents on Economics 45263, London School of Economics and Political Science, LSE Library.
    11. repec:dau:papers:123456789/4436 is not listed on IDEAS
    12. Imkeller, Peter & Pontier, Monique & Weisz, Ferenc, 2001. "Free lunch and arbitrage possibilities in a financial market model with an insider," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 103-130, March.
    13. Campi, Luciano & Çetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 534-567, March.
    14. repec:dau:papers:123456789/6880 is not listed on IDEAS
    15. Baruch, Shmuel, 2002. "Insider trading and risk aversion," Journal of Financial Markets, Elsevier, vol. 5(4), pages 451-464, October.
    16. Campi, Luciano & Cetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," LSE Research Online Documents on Economics 31538, London School of Economics and Political Science, LSE Library.
    17. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Giulia Di Nunno & Thilo Meyer-Brandis & Bernt Øksendal & Frank Proske, 2006. "Optimal portfolio for an insider in a market driven by Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Manuel Corcuera & Giulia Di Nunno, 2018. "Kyle–Back’S Model With A Random Horizon," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-41, March.
    2. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    3. Luke M. Bennett & Wei Hu, 2023. "Filtration enlargement‐based time series forecast in view of insider trading," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 112-140, February.
    4. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    5. Umut c{C}et{i}n, 2018. "Mathematics of Market Microstructure under Asymmetric Information," Papers 1809.03885, arXiv.org.
    6. Jos'e M. Corcuera & Giulia Di Nunno, 2020. "Path-dependent Kyle equilibrium model," Papers 2006.06395, arXiv.org, revised Oct 2022.
    7. Cetin, Umut & Danilova, Albina, 2021. "On pricing rules and optimal strategies in general Kyle-Back models," LSE Research Online Documents on Economics 113003, London School of Economics and Political Science, LSE Library.
    8. Ibrahim Ekren & Brad Mostowski & Gordan v{Z}itkovi'c, 2022. "Kyle's Model with Stochastic Liquidity," Papers 2204.11069, arXiv.org.
    9. Dolinsky, Yan & Zouari, Jonathan, 2021. "The value of insider information for super-replication with quadratic transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 394-416.
    10. Umut Çetin, 2018. "Financial equilibrium with asymmetric information and random horizon," Finance and Stochastics, Springer, vol. 22(1), pages 97-126, January.
    11. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Jul 2024.
    12. Umut c{C}etin, 2016. "Financial equilibrium with asymmetric information and random horizon," Papers 1603.08828, arXiv.org, revised Sep 2017.
    13. Peter Imkeller, 2003. "Malliavin's Calculus in Insider Models: Additional Utility and Free Lunches," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 153-169, January.
    14. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    15. Luciano Campi & Umut Çetin & Albina Danilova, 2013. "Equilibrium model with default and dynamic insider information," Finance and Stochastics, Springer, vol. 17(3), pages 565-585, July.
    16. Luciano Campi & Umut Cetin & Albina Danilova, 2011. "Equilibrium model with default and insider's dynamic information," Working Papers hal-00613216, HAL.
    17. Umut c{C}etin & Albina Danilova, 2018. "On pricing rules and optimal strategies in general Kyle-Back models," Papers 1812.07529, arXiv.org, revised Aug 2021.
    18. Giacomo Morelli, 2021. "Liquidity drops," Annals of Operations Research, Springer, vol. 299(1), pages 711-719, April.
    19. Shreya Bose & Ibrahim Ekren, 2021. "Multidimensional Kyle-Back model with a risk averse informed trader," Papers 2111.01957, arXiv.org.
    20. Çetin, Umut, 2018. "Financial equilibrium with asymmetric information and random horizon," LSE Research Online Documents on Economics 84495, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1411.2835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.