IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/45263.html
   My bibliography  Save this paper

Explicit construction of a dynamic Bessel bridge of dimension 3

Author

Listed:
  • Campi, Luciano
  • Cetin, Umut
  • Danilova, Albina

Abstract

Given a deterministically time-changed Brownian motion Z starting from 1, whose time-change V(t) satisfies V(t) > t for all t > 0, we perform an explicit construction of a process X which is Brownian motion in its own filtration and that hits zero for the first time at V(τ), where τ:= inf {t > 0: Zt = 0}. We also provide the semimartingale decomposition of X under the filtration jointly generated by X and Z. Our construction relies on a combination of enlargement of filtration and filtering techniques. The resulting process X may be viewed as the analogue of a 3-dimensional Bessel bridge starting from 1 at time 0 and ending at 0 at the random time V(τ). We call this a dynamic Bessel bridge since V(τ) is not known in advance. Our study is motivated by insider trading models with default risk, where the insider observes the firm's value continuously on time. The financial application, which uses results proved in the present paper, has been developed in the companion paper [6].

Suggested Citation

  • Campi, Luciano & Cetin, Umut & Danilova, Albina, 2013. "Explicit construction of a dynamic Bessel bridge of dimension 3," LSE Research Online Documents on Economics 45263, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:45263
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/45263/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luciano Campi & Umut Çetin, 2007. "Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling," Finance and Stochastics, Springer, vol. 11(4), pages 591-602, October.
    2. Chaumont, L., 1996. "Conditionings and path decompositions for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 39-54, November.
    3. Back, Kerry & Pedersen, Hal, 1998. "Long-lived information and intraday patterns," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 385-402, September.
    4. repec:dau:papers:123456789/4436 is not listed on IDEAS
    5. Föllmer, Hans & Wu, Ching-Tang & Yor, Marc, 1999. "Canonical decomposition of linear transformations of two independent Brownian motions motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 137-164, November.
    6. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    7. Luciano Campi & Umut Cetin & Albina Danilova, 2011. "Equilibrium model with default and insider's dynamic information," Working Papers hal-00613216, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
    2. Luke M. Bennett & Wei Hu, 2023. "Filtration enlargement‐based time series forecast in view of insider trading," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 112-140, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Campi & Umut c{C}etin & Albina Danilova, 2012. "Dynamic Markov bridges motivated by models of insider trading," Papers 1202.2980, arXiv.org.
    2. Campi, Luciano & Çetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 534-567, March.
    3. Shreya Bose & Ibrahim Ekren, 2020. "Kyle-Back Models with risk aversion and non-Gaussian Beliefs," Papers 2008.06377, arXiv.org, revised Oct 2022.
    4. Li, Cheng & Xing, Hao, 2015. "Asymptotic Glosten-Milgrom equilibrium," LSE Research Online Documents on Economics 60579, London School of Economics and Political Science, LSE Library.
    5. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    6. Umut Çetin, 2018. "Financial equilibrium with asymmetric information and random horizon," Finance and Stochastics, Springer, vol. 22(1), pages 97-126, January.
    7. Umut c{C}et{i}n, 2018. "Mathematics of Market Microstructure under Asymmetric Information," Papers 1809.03885, arXiv.org.
    8. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    9. Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
    10. Albina Danilova, 2016. "Stock Market Insider Trading in Continuous Time with Imperfect Dynamic Information," Papers 1607.00035, arXiv.org.
    11. Umut c{C}etin, 2016. "Financial equilibrium with asymmetric information and random horizon," Papers 1603.08828, arXiv.org, revised Sep 2017.
    12. Campi, Luciano & Cetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," LSE Research Online Documents on Economics 31538, London School of Economics and Political Science, LSE Library.
    13. Luciano Campi & Umut Çetin & Albina Danilova, 2013. "Equilibrium model with default and dynamic insider information," Finance and Stochastics, Springer, vol. 17(3), pages 565-585, July.
    14. Luciano Campi & Umut Cetin & Albina Danilova, 2011. "Equilibrium model with default and insider's dynamic information," Working Papers hal-00613216, HAL.
    15. Cheng Li & Hao Xing, 2013. "Asymptotic Glosten Milgrom equilibrium," Papers 1310.4994, arXiv.org, revised Jan 2015.
    16. Christoph Kuhn & Christopher Lorenz, 2023. "Insider trading in discrete time Kyle games," Papers 2312.00904, arXiv.org, revised Jul 2024.
    17. Çetin, Umut, 2018. "Financial equilibrium with asymmetric information and random horizon," LSE Research Online Documents on Economics 84495, London School of Economics and Political Science, LSE Library.
    18. Jos'e M. Corcuera & Giulia Di Nunno, 2020. "Path-dependent Kyle equilibrium model," Papers 2006.06395, arXiv.org, revised Oct 2022.
    19. José Manuel Corcuera & Giulia Di Nunno, 2018. "Kyle–Back’S Model With A Random Horizon," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-41, March.
    20. Dan Bernhardt & P. Seiler & B. Taub, 2010. "Speculative dynamics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 1-52, July.

    More about this item

    Keywords

    Dynamic Bessel bridge; enlargement of filtrations; filtering; martingale problems; insider trading;
    All these keywords.

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:45263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.