IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.07529.html
   My bibliography  Save this paper

On pricing rules and optimal strategies in general Kyle-Back models

Author

Listed:
  • Umut c{C}etin
  • Albina Danilova

Abstract

The folk result in Kyle-Back models states that the value function of the insider remains unchanged when her admissible strategies are restricted to absolutely continuous ones. In this paper we show that, for a large class of pricing rules used in current literature, the value function of the insider can be finite when her strategies are restricted to be absolutely continuous and infinite when this restriction is not imposed. This implies that the folk result doesn't hold for those pricing rules and that they are not consistent with equilibrium. We derive the necessary conditions for a pricing rule to be consistent with equilibrium and prove that, when a pricing rule satisfies these necessary conditions, the insider's optimal strategy is absolutely continuous, thus obtaining the classical result in a more general setting. This, furthermore, allows us to justify the standard assumption of absolute continuity of insider's strategies since one can construct a pricing rule satisfying the necessary conditions derived in the paper that yield the same price process as the pricing rules employed in the modern literature when insider's strategies are absolutely continuous.

Suggested Citation

  • Umut c{C}etin & Albina Danilova, 2018. "On pricing rules and optimal strategies in general Kyle-Back models," Papers 1812.07529, arXiv.org, revised Aug 2021.
  • Handle: RePEc:arx:papers:1812.07529
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.07529
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umut Çetin, 2018. "Financial equilibrium with asymmetric information and random horizon," Finance and Stochastics, Springer, vol. 22(1), pages 97-126, January.
    2. Back, Kerry & Pedersen, Hal, 1998. "Long-lived information and intraday patterns," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 385-402, September.
    3. Pierre Collin‐Dufresne & Vyacheslav Fos, 2016. "Insider Trading, Stochastic Liquidity, and Equilibrium Prices," Econometrica, Econometric Society, vol. 84, pages 1441-1475, July.
    4. repec:dau:papers:123456789/6880 is not listed on IDEAS
    5. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    6. Luciano Campi & Umut Çetin & Albina Danilova, 2013. "Equilibrium model with default and dynamic insider information," Finance and Stochastics, Springer, vol. 17(3), pages 565-585, July.
    7. Campi, Luciano & Cetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," LSE Research Online Documents on Economics 31538, London School of Economics and Political Science, LSE Library.
    8. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    9. Çetin, Umut, 2018. "Financial equilibrium with asymmetric information and random horizon," LSE Research Online Documents on Economics 84495, London School of Economics and Political Science, LSE Library.
    10. Kerry Back & Shmuel Baruch, 2004. "Information in Securities Markets: Kyle Meets Glosten and Milgrom," Econometrica, Econometric Society, vol. 72(2), pages 433-465, March.
    11. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    12. Campi, Luciano & Çetin, Umut & Danilova, Albina, 2011. "Dynamic Markov bridges motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 534-567, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Hyuk Choi & Heeyoung Kwon & Kasper Larsen, 2022. "Trading constraints in continuous-time Kyle models," Papers 2206.08117, arXiv.org.
    2. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    3. Fabrice Baudoin & Oleksii Mostovyi, 2024. "The indifference value of the weak information," Papers 2408.02137, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cetin, Umut & Danilova, Albina, 2021. "On pricing rules and optimal strategies in general Kyle-Back models," LSE Research Online Documents on Economics 113003, London School of Economics and Political Science, LSE Library.
    2. José Manuel Corcuera & Giulia Di Nunno, 2018. "Kyle–Back’S Model With A Random Horizon," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-41, March.
    3. Luke M. Bennett & Wei Hu, 2023. "Filtration enlargement‐based time series forecast in view of insider trading," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 112-140, February.
    4. Shreya Bose & Ibrahim Ekren, 2021. "Multidimensional Kyle-Back model with a risk averse informed trader," Papers 2111.01957, arXiv.org.
    5. Jos'e M. Corcuera & Giulia Di Nunno, 2020. "Path-dependent Kyle equilibrium model," Papers 2006.06395, arXiv.org, revised Oct 2022.
    6. Ibrahim Ekren & Brad Mostowski & Gordan v{Z}itkovi'c, 2022. "Kyle's Model with Stochastic Liquidity," Papers 2204.11069, arXiv.org.
    7. Umut Çetin, 2018. "Financial equilibrium with asymmetric information and random horizon," Finance and Stochastics, Springer, vol. 22(1), pages 97-126, January.
    8. Umut c{C}et{i}n, 2018. "Mathematics of Market Microstructure under Asymmetric Information," Papers 1809.03885, arXiv.org.
    9. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    10. Umut c{C}etin, 2016. "Financial equilibrium with asymmetric information and random horizon," Papers 1603.08828, arXiv.org, revised Sep 2017.
    11. Umut c{C}etin & Hao Xing, 2012. "Point process bridges and weak convergence of insider trading models," Papers 1205.4358, arXiv.org, revised Jan 2013.
    12. Jin Hyuk Choi & Heeyoung Kwon & Kasper Larsen, 2022. "Trading constraints in continuous-time Kyle models," Papers 2206.08117, arXiv.org.
    13. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Jul 2024.
    14. Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
    15. Cetin, Umut & Xing, Hao, 2013. "Point process bridges and weak convergence of insider trading models," LSE Research Online Documents on Economics 48745, London School of Economics and Political Science, LSE Library.
    16. Luciano Campi & Umut Cetin & Albina Danilova, 2011. "Equilibrium model with default and insider's dynamic information," Working Papers hal-00613216, HAL.
    17. Cheng Li & Hao Xing, 2013. "Asymptotic Glosten Milgrom equilibrium," Papers 1310.4994, arXiv.org, revised Jan 2015.
    18. Christoph Kuhn & Christopher Lorenz, 2023. "Insider trading in discrete time Kyle games," Papers 2312.00904, arXiv.org, revised Jul 2024.
    19. Çetin, Umut, 2018. "Financial equilibrium with asymmetric information and random horizon," LSE Research Online Documents on Economics 84495, London School of Economics and Political Science, LSE Library.
    20. Banerjee, Snehal & Breon-Drish, Bradyn, 2020. "Strategic trading and unobservable information acquisition," Journal of Financial Economics, Elsevier, vol. 138(2), pages 458-482.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.07529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.