IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.09573.html
   My bibliography  Save this paper

Comparison of various risk measures for an optimal portfolio

Author

Listed:
  • Alev Meral

Abstract

In this paper, we search for optimal portfolio strategies in the presence of various risk measure that are common in financial applications. Particularly, we deal with the static optimization problem with respect to Value at Risk, Expected Loss and Expected Utility Loss measures. To do so, under the Black- Scholes model for the financial market, Martingale method is applied to give closed-form solutions for the optimal terminal wealths; then via representation problem the optimal portfolio strategies are achieved. We compare the performances of these measures on the terminal wealths and optimal strategies of such constrained investors. Finally, we present some numerical results to compare them in several respects to give light to further studies.

Suggested Citation

  • Alev Meral, 2019. "Comparison of various risk measures for an optimal portfolio," Papers 1912.09573, arXiv.org.
  • Handle: RePEc:arx:papers:1912.09573
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.09573
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    12. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    2. repec:dau:papers:123456789/5590 is not listed on IDEAS
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    6. repec:dau:papers:123456789/5374 is not listed on IDEAS
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    8. Lioui, Abraham & Poncet, Patrice, 2003. "International asset allocation: A new perspective," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2203-2230, November.
    9. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    10. Friedrich Hubalek & Walter Schachermayer, 2021. "Convergence of optimal expected utility for a sequence of binomial models," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1315-1331, October.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    13. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    14. Huhtala, Heli, 2008. "Along but beyond mean-variance: Utility maximization in a semimartingale model," Bank of Finland Research Discussion Papers 5/2008, Bank of Finland.
    15. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.
    16. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    17. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    18. Eckhard Platen, 2005. "On The Role Of The Growth Optimal Portfolio In Finance," Australian Economic Papers, Wiley Blackwell, vol. 44(4), pages 365-388, December.
    19. Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
    20. repec:zbw:bofrdp:2008_005 is not listed on IDEAS
    21. Robert A. Jarrow, 1999. "In Honor of the Nobel Laureates Robert C. Merton and Myron S. Scholes: A Partial Differential Equation That Changed the World," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 229-248, Fall.
    22. Nguyen, Pascal & Portait, Roland, 2002. "Dynamic asset allocation with mean variance preferences and a solvency constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 11-32, January.
    23. Huhtala, Heli, 2008. "Along but beyond mean-variance : Utility maximization in a semimartingale model," Research Discussion Papers 5/2008, Bank of Finland.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.09573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.