IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.4074.html
   My bibliography  Save this paper

Option Pricing with Lie Symmetry Analysis and Similarity Reduction Method

Author

Listed:
  • Wenqing Bao
  • ChunLi Chen
  • Jin E. Zhang

Abstract

With some transformations, we convert the problem of option pricing under state-dependent volatility into an initial value problem of the Fokker-Planck equation with a certain potential. By using the Lie symmetry analysis and similarity reduction method, we are able to reduce the dimensions of the partial differential equation and find some of its particular solutions of the equation. A few case studies demonstrate that our new method can be used to produce analytical option pricing formulas for certain volatility functions.

Suggested Citation

  • Wenqing Bao & ChunLi Chen & Jin E. Zhang, 2013. "Option Pricing with Lie Symmetry Analysis and Similarity Reduction Method," Papers 1311.4074, arXiv.org.
  • Handle: RePEc:arx:papers:1311.4074
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.4074
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Peter Laurence & Tai-Ho Wang, 2005. "Closed Form Solutions For Quadratic And Inverse Quadratic Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(08), pages 1059-1083.
    4. Jin E. Zhang & Yishen Li, 2012. "New analytical option pricing models with Weyl--Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1003-1010, June.
    5. C. F. Lo & C. H. Hui, 2001. "Valuation of financial derivatives with time-dependent parameters: Lie-algebraic approach," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 73-78.
    6. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    7. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    8. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    9. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    10. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    3. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    4. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    5. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    6. Rodriguez, Ricardo J., 2002. "Lognormal option pricing for arbitrary underlying assets: a synthesis," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 577-586.
    7. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    8. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    9. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    10. Coggins, Jay S. & Ramezani, Cyrus A., 1998. "An Arbitrage-Free Approach to Quasi-Option Value," Journal of Environmental Economics and Management, Elsevier, vol. 35(2), pages 103-125, March.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    15. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    16. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    17. Dan W. French & Edwin D. Maberly, 1992. "Early Exercise Of American Index Options," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(2), pages 127-137, June.
    18. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    19. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    20. Ben Boukai, 2021. "On the RND under Heston's stochastic volatility model," Papers 2101.03626, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.4074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.