IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v429y2015icp17-27.html
   My bibliography  Save this article

Multifractal cross-correlation analysis in electricity spot market

Author

Listed:
  • Fan, Qingju
  • Li, Dan

Abstract

In this paper, we investigate the multiscale cross-correlations between electricity price and trading volume in Czech market based on a newly developed algorithm, called Multifractal Cross-Correlation Analysis (MFCCA). The new algorithm is a natural multifractal generalization of the Detrended Cross-Correlation Analysis (DCCA), and is sensitive to cross-correlation structure and free from limitations of other algorithms. By considering the original sign of the cross-covariance, it allows us to properly quantify and detect the subtle characteristics of two simultaneous recorded time series. First, the multifractality and the long range anti-persistent auto-correlations of price return and trading volume variation are confirmed using Multifractal Detrended Fluctuation Analysis (MF-DFA). Furthermore, we show that there exist long-range anti-persistent cross-correlations between price return and trading volume variation by MFCCA. And we also identify that the cross-correlations disappear on the level of relative small fluctuations. In order to obtain deeper insight into the dynamics of the electricity market, we analyze the relation between generalized Hurst exponent and the multifractal cross-correlation scaling exponent λq. We find that the difference between the generalized Hurst exponent and the multifractal cross-correlation scaling exponent is significantly different for smaller fluctuation, which indicates that the multifractal character of cross-correlations resembles more each other for electricity price and trading volume on the level of large fluctuations and weakens for the smaller ones.

Suggested Citation

  • Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
  • Handle: RePEc:eee:phsmap:v:429:y:2015:i:c:p:17-27
    DOI: 10.1016/j.physa.2015.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500182X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    2. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    3. Ingve Simonsen, 2001. "Measuring Anti-Correlations in the Nordic Electricity Spot Market by Wavelets," Papers cond-mat/0108033, arXiv.org, revised Apr 2003.
    4. Shi, Wenbin & Shang, Pengjian & Wang, Jing & Lin, Aijing, 2014. "Multiscale multifractal detrended cross-correlation analysis of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 35-44.
    5. Wang, Fang & Liao, Gui-ping & Li, Jian-hui & Li, Xiao-chun & Zhou, Tie-jun, 2013. "Multifractal detrended fluctuation analysis for clustering structures of electricity price periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5723-5734.
    6. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    7. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    8. repec:dau:papers:123456789/1433 is not listed on IDEAS
    9. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    10. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    11. Pawe{l} O'swic{e}cimka & Stanis{l}aw Dro.zd.z & Marcin Forczek & Stanis{l}aw Jadach & Jaros{l}aw Kwapie'n, 2013. "Detrended Cross-Correlation Analysis Consistently Extended to Multifractality," Papers 1308.6148, arXiv.org, revised Feb 2014.
    12. Simonsen, Ingve, 2003. "Measuring anti-correlations in the nordic electricity spot market by wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 597-606.
    13. S. Shadkhoo & G. R. Jafari, 2009. "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 679-683, December.
    14. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    15. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    16. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    17. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    18. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    19. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    20. Siqueira, Erinaldo Leite & Stošić, Tatijana & Bejan, Lucian & Stošić, Borko, 2010. "Correlations and cross-correlations in the Brazilian agrarian commodities and stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2739-2743.
    21. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    22. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    23. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    24. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Keqiang & Zhang, Hong & Gao, You, 2017. "Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 363-369.
    2. Renato Fernandes & Isabel Soares, 2022. "Reviewing Explanatory Methodologies of Electricity Markets: An Application to the Iberian Market," Energies, MDPI, vol. 15(14), pages 1-17, July.
    3. Aslam, Faheem & Hunjra, Ahmed Imran & Memon, Bilal Ahmed & Zhang, Mingda, 2024. "Interplay of multifractal dynamics between shadow policy rates and energy markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    4. Chen, Hong & Zhu, Li & Jia, GuoZhu, 2020. "MF-DCCA between molecular properties and aqueous solubility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Li, Jianfeng & Lu, Xinsheng & Jiang, Wei & Petrova, Vanya S., 2021. "Multifractal Cross-correlations between foreign exchange rates and interest rate spreads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    6. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    7. Ruan, Qingsong & Zhou, Mi & Yin, Linsen & Lv, Dayong, 2021. "Hedging effectiveness of Chinese Treasury bond futures: New evidence based on nonlinear analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Nascimento Filho, A.S. & Pereira, E.J.A.L. & Ferreira, Paulo & Murari, T.B. & Moret, M.A., 2018. "Cross-correlation analysis on Brazilian gasoline retail market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 550-557.
    9. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Guo, Yaoqi & Shi, Fengyuan & Yu, Zhuling & Yao, Shanshan & Zhang, Hongwei, 2022. "Asymmetric multifractality in China’s energy market based on improved asymmetric multifractal cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    11. Lin, Aijing & Shang, Pengjian, 2016. "Multifractality of stock markets based on cumulative distribution function and multiscale multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 527-534.
    12. Aktham Maghyereh & Hussein Abdoh & Marcin Wątorek, 2023. "The impact of COVID-19 pandemic on the dynamic correlations between gold and U.S. equities: evidence from multifractal cross-correlation analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1889-1903, April.
    13. Ruan, Qingsong & Yang, Bingchan & Ma, Guofeng, 2017. "Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 91-108.
    14. Wang, Fang & Wang, Lin & Chen, Yuming, 2018. "Quantifying the range of cross-correlated fluctuations using a q–L dependent AHXA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 454-464.
    15. El Alaoui, Marwane, 2017. "Price–volume multifractal analysis of the Moroccan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 473-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    2. Li, Wei & Lu, Xinsheng & Ren, Yongping & Zhou, Ying, 2018. "Dynamic relationship between RMB exchange rate index and stock market liquidity: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 726-739.
    3. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    4. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    5. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    6. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    7. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    8. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    9. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    10. Wang, Fang & Wang, Lin & Chen, Yuming, 2018. "Quantifying the range of cross-correlated fluctuations using a q–L dependent AHXA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 454-464.
    11. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    12. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    14. Dong, Keqiang & Zhang, Hong & Gao, You, 2017. "Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 363-369.
    15. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    16. Wang, Gang-Jin & Xie, Chi & He, Ling-Yun & Chen, Shou, 2014. "Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 70-79.
    17. Zhou, Yu & Chen, Shi, 2016. "Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 117-127.
    18. Wang, Fang & Yang, Zhaohui & Wang, Lin, 2016. "Detecting and quantifying cross-correlations by analogous multifractal height cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 954-962.
    19. Liu, Li & Wang, Yudong, 2014. "Cross-correlations between spot and futures markets of nonferrous metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 20-30.
    20. Cao, Guangxi & Han, Yan & Cui, Weijun & Guo, Yu, 2014. "Multifractal detrended cross-correlations between the CSI 300 index futures and the spot markets based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 308-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:429:y:2015:i:c:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.