IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1304.4623.html
   My bibliography  Save this paper

Cubature on Wiener space: pathwise convergence

Author

Listed:
  • Christian Bayer
  • Peter K. Friz

Abstract

Cubature on Wiener space [Lyons, T.; Victoir, N.; Proc. R. Soc. Lond. A 8 January 2004 vol. 460 no. 2041 169-198] provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models. We give a random walk interpretation of cubature and similar (e.g. the Ninomiya--Victoir) weak approximation schemes. By using rough path analysis, we are able to establish weak convergence for general path-dependent option prices.

Suggested Citation

  • Christian Bayer & Peter K. Friz, 2013. "Cubature on Wiener space: pathwise convergence," Papers 1304.4623, arXiv.org.
  • Handle: RePEc:arx:papers:1304.4623
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1304.4623
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    2. Christian Litterer & Terry Lyons, 2007. "Cubature on Wiener Space Continued," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 12, pages 197-217, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopusanschi, Olga & Simon, Damien, 2018. "Lévy area with a drift as a renormalization limit of Markov chains on periodic graphs," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2404-2426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    2. Shigeto Kusuoka & Mariko Ninomiya & Syoiti Ninomiya, 2012. "Application Of The Kusuoka Approximation To Barrier Options," CARF F-Series CARF-F-277, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    4. Mariko Ninomiya & Syoiti Ninomiya, 2009. "A new higher-order weak approximation scheme for stochastic differential equations and the Runge–Kutta method," Finance and Stochastics, Springer, vol. 13(3), pages 415-443, September.
    5. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    6. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2010. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-745, CIRJE, Faculty of Economics, University of Tokyo.
    7. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    8. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    9. Al Gerbi Anis & Jourdain Benjamin & Clément Emmanuelle, 2016. "Ninomiya–Victoir scheme: Strong convergence, antithetic version and application to multilevel estimators," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 197-228, September.
    10. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2010. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Papers 1006.2281, arXiv.org, revised Mar 2013.
    11. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    12. Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.
    13. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Post-Print hal-00491371, HAL.
    14. Ahdida, Abdelkoddousse & Alfonsi, Aurélien, 2013. "A mean-reverting SDE on correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1472-1520.
    15. Kazuhiro Yoshikawa, 2015. "An Approximation Scheme for Diffusion Processes Based on an Antisymmetric Calculus over Wiener Space," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 185-207, May.
    16. Anis Al Gerbi & Benjamin Jourdain & Emmanuelle Cl'ement, 2015. "Ninomiya-Victoir scheme: strong convergence, antithetic version and application to multilevel estimators," Papers 1508.06492, arXiv.org, revised Oct 2015.
    17. Akiyama, Naho & Yamada, Toshihiro, 2024. "A weak approximation for Bismut’s formula: An algorithmic differentiation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 386-396.
    18. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2011. "A Mean-Reverting SDE on Correlation matrices," Papers 1108.5264, arXiv.org, revised Feb 2012.
    19. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    20. Mariko Ninomiya, 2011. "Sde Weak Approximation Library (Sde Wa) (Version 1.0)," CARF F-Series CARF-F-274, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1304.4623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.