IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.12853.html
   My bibliography  Save this paper

Cubature Method for Stochastic Volterra Integral Equations

Author

Listed:
  • Qi Feng
  • Jianfeng Zhang

Abstract

In this paper, we introduce the cubature formula for Stochastic Volterra Integral Equations. We first derive the stochastic Taylor expansion in this setting, by utilizing a functional It\^{o} formula, and provide its tail estimates. We then introduce the cubature measure for such equations, and construct it explicitly in some special cases, including a long memory stochastic volatility model. We shall provide the error estimate rigorously. Our numerical examples show that the cubature method is much more efficient than the Euler scheme, provided certain conditions are satisfied.

Suggested Citation

  • Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2110.12853
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.12853
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    3. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    4. Harang, Fabian A. & Tindel, Samy, 2021. "Volterra equations driven by rough signals," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 34-78.
    5. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    6. Baudoin, Fabrice & Coutin, Laure, 2007. "Operators associated with a stochastic differential equation driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 117(5), pages 550-574, May.
    7. Christian Litterer & Terry Lyons, 2007. "Cubature on Wiener Space Continued," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 12, pages 197-217, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
    3. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    4. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    6. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    7. Lovas, Attila & Rásonyi, Miklós, 2021. "Markov chains in random environment with applications in queuing theory and machine learning," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 294-326.
    8. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    9. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    10. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    11. Bal'azs Gerencs'er & Mikl'os R'asonyi, 2020. "Invariant measures for multidimensional fractional stochastic volatility models," Papers 2002.04832, arXiv.org, revised Aug 2021.
    12. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    13. Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
    14. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    15. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    16. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    17. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    18. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    19. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    20. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.12853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.