IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.5264.html
   My bibliography  Save this paper

A Mean-Reverting SDE on Correlation matrices

Author

Listed:
  • Abdelkoddousse Ahdida

    (CERMICS)

  • Aur'elien Alfonsi

    (CERMICS)

Abstract

We introduce a mean-reverting SDE whose solution is naturally defined on the space of correlation matrices. This SDE can be seen as an extension of the well-known Wright-Fisher diffusion. We provide conditions that ensure weak and strong uniqueness of the SDE, and describe its ergodic limit. We also shed light on a useful connection with Wishart processes that makes understand how we get the full SDE. Then, we focus on the simulation of this diffusion and present discretization schemes that achieve a second-order weak convergence. Last, we explain how these correlation processes could be used to model the dependence between financial assets.

Suggested Citation

  • Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2011. "A Mean-Reverting SDE on Correlation matrices," Papers 1108.5264, arXiv.org, revised Feb 2012.
  • Handle: RePEc:arx:papers:1108.5264
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.5264
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    2. Gourieroux, Christian & Jasiak, Joann, 2006. "Multivariate Jacobi process with application to smooth transitions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 475-505.
    3. Tina Hviid Rydberg, 1997. "A note on the existence of unique equivalent martingale measures in a Markovian setting," Finance and Stochastics, Springer, vol. 1(3), pages 251-257.
    4. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahdida, Abdelkoddousse & Alfonsi, Aurélien, 2013. "A mean-reverting SDE on correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1472-1520.
    2. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "A Mean-Reverting SDE on Correlation matrices," Post-Print hal-00617111, HAL.
    3. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    4. Nicolas Bouleau & Christophe Chorro, 2015. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Documents de travail du Centre d'Economie de la Sorbonne 15024r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2015.
    5. Bouleau, Nicolas & Chorro, Christophe, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright–Fisher diffusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 379-395.
    6. Nicolas Bouleau & Christophe Chorro, 2015. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Post-Print halshs-01162452, HAL.
    7. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    8. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    9. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    10. Shigeto Kusuoka & Mariko Ninomiya & Syoiti Ninomiya, 2012. "Application Of The Kusuoka Approximation To Barrier Options," CARF F-Series CARF-F-277, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    12. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    13. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    14. Barndorff-Nielsen, Ole E. & Pérez-Abreu, Victor, 1999. "Stationary and self-similar processes driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 357-369, December.
    15. Mariko Ninomiya & Syoiti Ninomiya, 2009. "A new higher-order weak approximation scheme for stochastic differential equations and the Runge–Kutta method," Finance and Stochastics, Springer, vol. 13(3), pages 415-443, September.
    16. Abdelkoddousse Ahdida & Aur'elien Alfonsi & Ernesto Palidda, 2014. "Smile with the Gaussian term structure model," Papers 1412.7412, arXiv.org, revised Nov 2015.
    17. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    18. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    19. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    20. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2010. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-745, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.5264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.