IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf277.html
   My bibliography  Save this paper

Application Of The Kusuoka Approximation To Barrier Options

Author

Listed:
  • Shigeto Kusuoka

    (Graduate School of Mathematical Sciences, The University of Tokyo)

  • Mariko Ninomiya

    (Graduate School of Economics, University of Tokyo)

  • Syoiti Ninomiya

    (Center for Research in Advanced Financial Technology, Tokyo Institute of Technology)

Abstract

The authors focuses on numerical experiments of application of the Kusuoka approximation to pricing barrier options which is one of the problems with a boundary condition. The killing functions play a role of giving probability of hitting the boundary. The numerical experiments show that second-order approximation is achieved as done in pricing European style options ([3][4]).

Suggested Citation

  • Shigeto Kusuoka & Mariko Ninomiya & Syoiti Ninomiya, 2012. "Application Of The Kusuoka Approximation To Barrier Options," CARF F-Series CARF-F-277, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf277
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/289.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kensuke Ishitani, 2016. "Computation of first-order Greeks for barrier options using chain rules for Wiener path integrals," Papers 1611.05194, arXiv.org, revised Dec 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    2. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    3. Mariko Ninomiya, 2011. "Sde Weak Approximation Library (Sde Wa) (Version 1.0)," CARF F-Series CARF-F-274, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Mariko Ninomiya & Syoiti Ninomiya, 2009. "A new higher-order weak approximation scheme for stochastic differential equations and the Runge–Kutta method," Finance and Stochastics, Springer, vol. 13(3), pages 415-443, September.
    5. Denis Belomestny & Tigran Nagapetyan, 2014. "Multilevel path simulation for weak approximation schemes," Papers 1406.2581, arXiv.org, revised Oct 2014.
    6. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    7. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2010. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-745, CIRJE, Faculty of Economics, University of Tokyo.
    8. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    9. Hocquet, Antoine & Vogler, Alexander, 2023. "An application of the multiplicative Sewing Lemma to the high order weak approximation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 183-217.
    10. Christian Bayer & Peter K. Friz & Paul Gassiat & Joerg Martin & Benjamin Stemper, 2017. "A regularity structure for rough volatility," Papers 1710.07481, arXiv.org.
    11. Al Gerbi, A. & Jourdain, B. & Clément, E., 2018. "Asymptotics for the normalized error of the Ninomiya–Victoir scheme," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1889-1928.
    12. Rey Clément, 2017. "Convergence in total variation distance of a third order scheme for one-dimensional diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 1-12, March.
    13. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    14. Mackevičius, Vigirdas, 2010. "On weak approximations of CIR equation with high volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 959-970.
    15. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    16. Al Gerbi Anis & Jourdain Benjamin & Clément Emmanuelle, 2016. "Ninomiya–Victoir scheme: Strong convergence, antithetic version and application to multilevel estimators," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 197-228, September.
    17. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2010. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Papers 1006.2281, arXiv.org, revised Mar 2013.
    18. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    19. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de Opciones Call Asiáticas Promedio Aritmético bajo Movimiento Browniano Logístico," Working Papers 46, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    20. Aur'elien Alfonsi & Ahmed Kebaier, 2021. "Approximation of Stochastic Volterra Equations with kernels of completely monotone type," Papers 2102.13505, arXiv.org, revised Mar 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.