IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1302.2312.html
   My bibliography  Save this paper

Convergence of European Lookback Options with Floating Strike in the Binomial Model

Author

Listed:
  • Fabien Heuwelyckx

Abstract

In this article we study the convergence of a European lookback option with floating strike evaluated with the binomial model of Cox-Ross-Rubinstein to its evaluation with the Black-Scholes model. We do the same for its delta. We confirm that these convergences are of order 1/Sqrt(n). For this, we use the binomial model of Cheuk-Vorst which allows us to write the price of the option using a double sum. Based on an improvement of a lemma of Lin-Palmer, we are able to give the precise value of the term in 1/Sqrt(n) in the expansion of the error; we also obtain the value of the term in 1/n if the risk free interest rate is non zero. This modelisation will also allow us to determine the first term in the expansion of the delta.

Suggested Citation

  • Fabien Heuwelyckx, 2013. "Convergence of European Lookback Options with Floating Strike in the Binomial Model," Papers 1302.2312, arXiv.org, revised Oct 2013.
  • Handle: RePEc:arx:papers:1302.2312
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1302.2312
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Lo-Bin Chang & Ken Palmer, 2007. "Smooth convergence in the binomial model," Finance and Stochastics, Springer, vol. 11(1), pages 91-105, January.
    3. Babbs, Simon, 2000. "Binomial valuation of lookback options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1499-1525, October.
    4. Francine Diener & MARC Diener, 2004. "Asymptotics of the price oscillations of a European call option in a tree model," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 271-293, April.
    5. Cheuk, Terry H. F. & Vorst, Ton C. F., 1997. "Currency lookback options and observation frequency: A binomial approach," Journal of International Money and Finance, Elsevier, vol. 16(2), pages 173-187, April.
    6. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2015. "The pricing of lookback options and binomial approximation," Papers 1502.02819, arXiv.org.
    2. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2016. "The pricing of lookback options and binomial approximation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 33-67, April.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
    5. Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
    6. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
    7. Elisa Appolloni & Andrea Ligori, 2014. "Efficient tree methods for pricing digital barrier options," Papers 1401.2900, arXiv.org, revised Jan 2014.
    8. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    9. Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
    10. Jérôme Lelong & Antonino Zanette, 2010. "Tree methods," Post-Print hal-00776713, HAL.
    11. M. Broadie & Y. Yamamoto, 2005. "A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options," Operations Research, INFORMS, vol. 53(5), pages 764-779, October.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    14. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    15. Guthrie, Graeme & Stannard, Tom, 2020. "Easy money? Managerial power and the option backdating game revisited," Journal of Banking & Finance, Elsevier, vol. 118(C).
    16. Glazyrina, Anna & Melnikov, Alexander, 2016. "Bernstein’s inequalities and their extensions for getting the Black–Scholes option pricing formula," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 86-92.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Min Dai, 2003. "One-state variable binomial models for European-/American-style geometric Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 288-295.
    19. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    20. Mihnea-Stefan Mihai, 2003. "Stochastics for the worst case: distributions and risk measures for minimal returns," Risk and Insurance 0305001, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.2312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.