Smooth convergence in the binomial model
Author
Abstract
Suggested Citation
DOI: 10.1007/s00780-006-0020-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
- Kaushik Amin & Ajay Khanna, 1994. "Convergence Of American Option Values From Discrete‐ To Continuous‐Time Financial Models1," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 289-304, October.
- Steve Heston & Guofu Zhou, 2000. "On the Rate of Convergence of Discrete‐Time Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 53-75, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
- Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
- Lee, Kiseop & Xu, Mingxin, 2007. "Parameter estimation from multinomial trees to jump diffusions with k means clustering," MPRA Paper 3307, University Library of Munich, Germany, revised 26 Apr 2007.
- Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
- Karl Grosse-Erdmann & Fabien Heuwelyckx, 2015. "The pricing of lookback options and binomial approximation," Papers 1502.02819, arXiv.org.
- Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
- Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
- Fabien Heuwelyckx, 2013. "Convergence of European Lookback Options with Floating Strike in the Binomial Model," Papers 1302.2312, arXiv.org, revised Oct 2013.
- Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
- Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
- J. X. Jiang & R. H. Liu & D. Nguyen, 2016. "A Recombining Tree Method For Option Pricing With State-Dependent Switching Rates," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-26, March.
- Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
- Leduc, Guillaume, 2012. "Arbitrarily Fast CRR Schemes," MPRA Paper 42094, University Library of Munich, Germany, revised 20 Oct 2012.
- Elisa Appolloni & Andrea Ligori, 2014. "Efficient tree methods for pricing digital barrier options," Papers 1401.2900, arXiv.org, revised Jan 2014.
- Karl Grosse-Erdmann & Fabien Heuwelyckx, 2016. "The pricing of lookback options and binomial approximation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 33-67, April.
- Glazyrina, Anna & Melnikov, Alexander, 2016. "Bernstein’s inequalities and their extensions for getting the Black–Scholes option pricing formula," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 86-92.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019.
"Enhancing binomial and trinomial equity option pricing models,"
Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
- Yong Shin Kim & Stoyan Stoyanov & Svetlozar Rachev & Frank J. Fabozzi, 2017. "Enhancing Binomial and Trinomial Equity Option Pricing Models," Papers 1712.03566, arXiv.org.
- Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
- Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
- David Heath & Stefano Herzel, 2002. "Efficient option valuation using trees," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(3), pages 163-178.
- Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
- Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
- Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
- Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
- Yen Thuan Trinh & Bernard Hanzon, 2022. "Option Pricing and CVA Calculations using the Monte Carlo-Tree (MC-Tree) Method," Papers 2202.00785, arXiv.org.
- Daniel W. Elfenbein & Anne Marie Knott & Rachel Croson, 2017. "Equity stakes and exit: An experimental approach to decomposing exit delay," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 278-299, February.
- Das, Sanjiv Ranjan, 1998. "A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(3), pages 333-369, November.
- Henry Lam & Zhenming Liu, 2014. "From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments," Papers 1406.6084, arXiv.org.
- Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
- Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
- Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
- Tobias Lipp & Grégoire Loeper & Olivier Pironneau, 2013. "Mixing Monte-Carlo and Partial Differential Equations for Pricing Options," Post-Print hal-01558826, HAL.
- Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
- Khaliq, A.Q.M. & Voss, D.A. & Yousuf, M., 2007. "Pricing exotic options with L-stable Pade schemes," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3438-3461, November.
More about this item
Keywords
Binomial model; Black–Scholes model; Option pricing; Smooth convergence; G13; 62P05;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:11:y:2007:i:1:p:91-105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.