IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v4y2016i2p15-d70613.html
   My bibliography  Save this article

Improving Convergence of Binomial Schemes and the Edgeworth Expansion

Author

Listed:
  • Alona Bock

    (Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany)

  • Ralf Korn

    (Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
    Financial Mathematics, Fraunhofer ITWM, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany)

Abstract

Binomial trees are very popular in both theory and applications of option pricing. As they often suffer from an irregular convergence behavior, improving this is an important task. We build upon a new version of the Edgeworth expansion for lattice models to construct new and quickly converging binomial schemes with a particular application to barrier options.

Suggested Citation

  • Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
  • Handle: RePEc:gam:jrisks:v:4:y:2016:i:2:p:15-:d:70613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/4/2/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/4/2/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
    2. Lo-Bin Chang & Ken Palmer, 2007. "Smooth convergence in the binomial model," Finance and Stochastics, Springer, vol. 11(1), pages 91-105, January.
    3. Yisong “Sam” Tian, 1999. "A flexible binomial option pricing model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(7), pages 817-843, October.
    4. Francine Diener & MARC Diener, 2004. "Asymptotics of the price oscillations of a European call option in a tree model," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 271-293, April.
    5. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    6. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    7. Leduc, Guillaume, 2012. "Arbitrarily Fast CRR Schemes," MPRA Paper 42094, University Library of Munich, Germany, revised 20 Oct 2012.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Leduc & Kenneth Palmer, 2023. "The Convergence Rate of Option Prices in Trinomial Trees," Risks, MDPI, vol. 11(3), pages 1-33, March.
    2. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
    3. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
    2. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
    3. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    4. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    5. Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
    6. Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
    7. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
    8. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    9. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    10. Elisa Appolloni & Andrea Ligori, 2014. "Efficient tree methods for pricing digital barrier options," Papers 1401.2900, arXiv.org, revised Jan 2014.
    11. Jarno Talponen & Minna Turunen, 2022. "Option pricing: a yet simpler approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 57-81, June.
    12. Pier Giuseppe Giribone & Simone Ligato, 2016. "Flexible-forward pricing through Leisen–Reimer trees: Implementation and performance comparison with traditional Markov chains," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-21, June.
    13. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2015. "The pricing of lookback options and binomial approximation," Papers 1502.02819, arXiv.org.
    14. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
    15. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    16. Vipul Kumar Singh, 2016. "Pricing and hedging competitiveness of the tree option pricing models: Evidence from India," Journal of Asset Management, Palgrave Macmillan, vol. 17(6), pages 453-475, October.
    17. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2016. "The pricing of lookback options and binomial approximation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 33-67, April.
    18. Mark Joshi, 2009. "Achieving smooth asymptotics for the prices of European options in binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 171-176.
    19. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    20. Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:4:y:2016:i:2:p:15-:d:70613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.