IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1211.5035.html
   My bibliography  Save this paper

Optimal hedging in discrete time

Author

Listed:
  • Bruno R'emillard

    (GERAD)

  • Sylvain Rubenthaler

    (JAD)

Abstract

Building on the work of Schweizer (1995) and Cern and Kallseny (2007), we present discrete time formulas minimizing the mean square hedging error for multidimensional assets. In particular, we give explicit formulas when a regime-switching random walk or a GARCH-type process is utilized to model the returns. Monte Carlo simulations are used to compare the optimal and delta hedging methods.

Suggested Citation

  • Bruno R'emillard & Sylvain Rubenthaler, 2012. "Optimal hedging in discrete time," Papers 1211.5035, arXiv.org.
  • Handle: RePEc:arx:papers:1211.5035
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1211.5035
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    2. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    3. René Garcia & Èric Renault, 1998. "A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 153-161, April.
    4. Lorenzo Cornalba & Jean-Philippe Bouchaud & Marc Potters, 2002. "Option Pricing And Hedging With Temporal Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 307-320.
    5. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    6. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    2. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    3. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    4. Maciej Augustyniak & Alexandru Badescu, 2021. "On the computation of hedging strategies in affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 710-735, May.
    5. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    6. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    7. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    8. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    9. Augustyniak, Maciej & Godin, Frédéric & Simard, Clarence, 2019. "A profitable modification to global quadratic hedging," Journal of Economic Dynamics and Control, Elsevier, vol. 104(C), pages 111-131.
    10. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    11. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    12. Bauwens, Luc & Lubrano, Michel, 2002. "Bayesian option pricing using asymmetric GARCH models," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 321-342, August.
    13. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    14. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    15. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    16. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    17. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    18. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39, December.
    19. Primbs, James A. & Yamada, Yuji, 2006. "A moment computation algorithm for the error in discrete dynamic hedging," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 519-540, February.
    20. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1211.5035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.