IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.4901.html
   My bibliography  Save this paper

An Approximate Solution Method for Large Risk-Averse Markov Decision Processes

Author

Listed:
  • Marek Petrik
  • Dharmashankar Subramanian

Abstract

Stochastic domains often involve risk-averse decision makers. While recent work has focused on how to model risk in Markov decision processes using risk measures, it has not addressed the problem of solving large risk-averse formulations. In this paper, we propose and analyze a new method for solving large risk-averse MDPs with hybrid continuous-discrete state spaces and continuous action spaces. The proposed method iteratively improves a bound on the value function using a linearity structure of the MDP. We demonstrate the utility and properties of the method on a portfolio optimization problem.

Suggested Citation

  • Marek Petrik & Dharmashankar Subramanian, 2012. "An Approximate Solution Method for Large Risk-Averse Markov Decision Processes," Papers 1210.4901, arXiv.org.
  • Handle: RePEc:arx:papers:1210.4901
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.4901
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    3. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    4. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    2. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    3. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    4. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    5. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    6. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    7. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    8. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    9. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    10. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    11. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    12. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    13. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    14. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    15. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    16. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    17. Bellini Fabio & Rosazza Gianin Emanuela, 2008. "Optimal portfolios with Haezendonck risk measures," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 89-108, March.
    18. Alexandre Street, 2010. "On the Conditional Value-at-Risk probability-dependent utility function," Theory and Decision, Springer, vol. 68(1), pages 49-68, February.
    19. A. Paç & Mustafa Pınar, 2014. "Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 875-891, October.
    20. Anthony Man-Cho So & Jiawei Zhang & Yinyu Ye, 2009. "Stochastic Combinatorial Optimization with Controllable Risk Aversion Level," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 522-537, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.4901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.