IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.4766.html
   My bibliography  Save this paper

A CB (corporate bond) pricing probabilities and recovery rates model for deriving default probabilities and recovery rates

Author

Listed:
  • Takeaki Kariya

Abstract

In this paper we formulate a corporate bond (CB) pricing model for deriving the term structure of default probabilities (TSDP) and the recovery rate (RR) for each pair of industry factor and credit rating grade, and these derived TSDP and RR are regarded as what investors imply in forming CB prices in the market at each time. A unique feature of this formulation is that the model allows each firm to run several business lines corresponding to some industry categories, which is typical in reality. In fact, treating all the cross-sectional CB prices simultaneously under a credit correlation structure at each time makes it possible to sort out the overlapping business lines of the firms which issued CBs and to extract the TSDPs for each pair of individual industry factor and rating grade together with the RRs. The result is applied to a valuation of CDS (credit default swap) and a loan portfolio management in banking business.

Suggested Citation

  • Takeaki Kariya, 2012. "A CB (corporate bond) pricing probabilities and recovery rates model for deriving default probabilities and recovery rates," Papers 1206.4766, arXiv.org, revised Jul 2012.
  • Handle: RePEc:arx:papers:1206.4766
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.4766
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Collin‐Dufresne & Bruno Solnik, 2001. "On the Term Structure of Default Premia in the Swap and LIBOR Markets," Journal of Finance, American Finance Association, vol. 56(3), pages 1095-1115, June.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhao, 2018. "Market†based estimates of implicit government guarantees in European financial institutions," European Financial Management, European Financial Management Association, vol. 24(1), pages 79-112, January.
    2. Aikman, David & Galesic, Mirta & Gigerenzer, Gerd & Kapadia, Sujit & Katsikopoulos, Konstantinos & Kothiyal, Amit & Murphy, Emma & Neumann, Tobias, 2014. "Financial Stability Paper No 28: Taking uncertainty seriously - simplicity versus complexity in financial regulation," Bank of England Financial Stability Papers 28, Bank of England.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. repec:wyi:journl:002109 is not listed on IDEAS
    3. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    4. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    5. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    6. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    9. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    10. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    11. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    12. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    13. repec:dau:papers:123456789/11497 is not listed on IDEAS
    14. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    15. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    16. Yao, Yong, 1999. "Term structure modeling and asymptotic long rate," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 327-336, December.
    17. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    20. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    21. Chenghu Ma, 2003. "Term Structure of Interest Rates in the Presence of Levy Jumps: The HJM Approach," Annals of Economics and Finance, Society for AEF, vol. 4(2), pages 401-426, November.
    22. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.4766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.