IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0207010.html
   My bibliography  Save this paper

Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives

Author

Listed:
  • Massoud Heidari

    (Caspian Capital)

  • Liuren Wu

    (Fordham University)

Abstract

Dynamic term structure models (DTSMs) price interest rate derivatives based on the model­ implied fair values of the yield curve, ignoring any pricing residuals on the yield curve that are either from model approximations or market imperfections. In contrast, option pricing in practice often takes the market observed yield curve as given and focuses exclusively on the specification of the volatility structure of forward rates. Thus, if any errors exist on the observed yield curve, they will be carried over permanently. This paper proposes a new framework that consistently prices both interest rates and interest rate derivatives. In particular, under such a framework, instead of making a priori assumptions, we allow the data on interest rates and interest rate derivatives to dictate the dynamics of the yield curve residuals, as well as their impact on the pricing of interest rate derivatives. Specifically, we propose an m+ n model structure. The first m factors capture the systematic movement of the yield curve and hence are referred to as the yield curve factors. The latter n factors are derived from the residuals on the yield curve and are labeled as the residual factors. We estimate a simple 3+3 Gaussian affine example using eight years of data on U.S. dollar LIBOR/swap rates and interest rate caps. The model performs well in pricing both interest rates and interest rate derivatives. Furthermore, we find that small residuals on the yield curve can have large impacts on the pricing of interest rate caps. Under the estimated model, the three Gaussian yield curve factors explain over 99.5 percent of the variation on the yield curve, but only account for less than 25 percent of the variation in the cap implied volatility. Incorporating the three residual factors improves the explained variance in cap implied volatility to over 95 percent. We investigate the reasons behind the ``amplification'' of yield curve residuals in pricing interest rate derivatives and find that the yield curve residuals are a recurring phenomenon, not a one­time event. Hence, the dynamics of the residuals influence option prices even if the current residual level is zero. We also find that the residuals concentrate on the two ends of the yield curve and are more transient than the original interest rate series, both of which, we argue, contribute to the amplification effect.

Suggested Citation

  • Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
  • Handle: RePEc:wpa:wuwpfi:0207010
    Note: Type of Document - pdf; prepared on MikTex; to print on postscript; pages: 37 ; figures: included. produced via dvipdfm
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0207/0207010.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0207/0207010.ps.gz
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rong Fan & Anurag Gupta & Peter Ritchken, 2003. "Hedging in the Possible Presence of Unspanned Stochastic Volatility: Evidence from Swaption Markets," Journal of Finance, American Finance Association, vol. 58(5), pages 2219-2248, October.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," The Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    4. Liu, Jun & Longstaff, Francis A. & Mandell, Ravit E., 2000. "The Market Price of Credit Risk: An Empirical Analysis of Interest Rate Swap Spreads," University of California at Los Angeles, Anderson Graduate School of Management qt0zw4f9w6, Anderson Graduate School of Management, UCLA.
    5. Jagannathan, Ravi & Kaplin, Andrew & Sun, Steve, 2003. "An evaluation of multi-factor CIR models using LIBOR, swap rates, and cap and swaption prices," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 113-146.
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Duffie, Darrell & Singleton, Kenneth J, 1997. "An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    8. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    9. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    10. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    11. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    12. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    13. Knez, Peter J & Litterman, Robert & Scheinkman, Jose Alexandre, 1994. "Explorations into Factors Explaining Money Market Returns," Journal of Finance, American Finance Association, vol. 49(5), pages 1861-1882, December.
    14. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    15. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    16. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    17. Goldstein, Robert S, 2000. "The Term Structure of Interest Rates as a Random Field," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 365-384.
    18. Markus Leippold & Liuren Wu, 2003. "Design and Estimation of Quadratic Term Structure Models," Review of Finance, European Finance Association, vol. 7(1), pages 47-73.
    19. Pearson, Neil D & Sun, Tong-Sheng, 1994. "Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    20. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    21. Darrel Duffie & Damir Filipović & Walter Schachermayer, 2002. "Affine Processes and Application in Finance," NBER Technical Working Papers 0281, National Bureau of Economic Research, Inc.
    22. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, vol. 13(2), pages 111-135, September.
    23. Francis A. Longstaff & Pedro Santa‐Clara & Eduardo S. Schwartz, 2001. "The Relative Valuation of Caps and Swaptions: Theory and Empirical Evidence," Journal of Finance, American Finance Association, vol. 56(6), pages 2067-2109, December.
    24. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    25. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    2. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    3. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. repec:wyi:journl:002109 is not listed on IDEAS
    9. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    10. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    11. Gupta, Anurag & Subrahmanyam, Marti G., 2005. "Pricing and hedging interest rate options: Evidence from cap-floor markets," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 701-733, March.
    12. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    13. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    14. Pandher, Gurupdesh, 2007. "Arbitrage-free valuation of interest rate securities under forward curves with stochastic speed and acceleration," Journal of Economic Theory, Elsevier, vol. 137(1), pages 432-459, November.
    15. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    16. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    17. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    18. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    19. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    20. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, December.
    21. Choong Tze Chua & Dean Foster & Krishna Ramaswamy & Robert Stine, 2008. "A Dynamic Model for the Forward Curve," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 265-310, January.

    More about this item

    Keywords

    term structure; yield curve; interest rate caps; implied volatility; residual factors; ex­tended Kalman Filter; quasi­maximum likelihood estimation.;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0207010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.