IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.6160.html
   My bibliography  Save this paper

Stability of the exponential utility maximization problem with respect to preferences

Author

Listed:
  • Hao Xing

Abstract

This paper studies stability of the exponential utility maximization when there are small variations on agent's utility function. Two settings are considered. First, in a general semimartingale model where random endowments are present, a sequence of utilities defined on R converges to the exponential utility. Under a uniform condition on their marginal utilities, convergence of value functions, optimal payoffs and optimal investment strategies are obtained, their rate of convergence are also determined. Stability of utility-based pricing is studied as an application. Second, a sequence of utilities defined on R_+ converges to the exponential utility after shifting and scaling. Their associated optimal strategies, after appropriate scaling, converge to the optimal strategy for the exponential hedging problem. This complements Theorem 3.2 in \textit{M. Nutz, Probab. Theory Relat. Fields, 152, 2012}, which establishes the convergence for a sequence of power utilities.

Suggested Citation

  • Hao Xing, 2012. "Stability of the exponential utility maximization problem with respect to preferences," Papers 1205.6160, arXiv.org, revised Sep 2013.
  • Handle: RePEc:arx:papers:1205.6160
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.6160
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kasper Larsen & Gordan Zitkovic, 2007. "Stability of utility-maximization in incomplete markets," Papers 0706.0474, arXiv.org.
    2. Markus Mocha & Nicholas Westray, 2011. "The Stability of the Constrained Utility Maximization Problem - A BSDE Approach," Papers 1107.0190, arXiv.org.
    3. Yuri M. Kabanov & Christophe Stricker, 2002. "On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 125-134, April.
    4. Sara Biagini & Marco Frittelli, 2007. "The supermartingale property of the optimal wealth process for general semimartingales," Finance and Stochastics, Springer, vol. 11(2), pages 253-266, April.
    5. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    6. Larsen, Kasper & Zitkovic, Gordan, 2007. "Stability of utility-maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1642-1662, November.
    7. Elyès Jouini & Clotilde Napp, 2004. "Convergence of utility functions and convergence of optimal strategies," Finance and Stochastics, Springer, vol. 8(1), pages 133-144, January.
    8. Bayraktar, Erhan & Kravitz, Ross, 2013. "Stability of exponential utility maximization with respect to market perturbations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1671-1690.
    9. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    10. Kasper Larsen, 2009. "Continuity Of Utility‐Maximization With Respect To Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 237-250, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hao, 2017. "Stability of the exponential utility maximization problem with respect to preferences," LSE Research Online Documents on Economics 57213, London School of Economics and Political Science, LSE Library.
    2. Lingqi Gu & Yiqing Lin & Junjian Yang, 2017. "Utility maximization problem under transaction costs: optimal dual processes and stability," Papers 1710.04363, arXiv.org.
    3. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    4. Kim Weston, 2014. "Stability of Utility Maximization in Nonequivalent Markets," Papers 1410.0915, arXiv.org, revised Jun 2015.
    5. Gordan Žitković, 2012. "An example of a stochastic equilibrium with incomplete markets," Finance and Stochastics, Springer, vol. 16(2), pages 177-206, April.
    6. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    7. Michail Anthropelos & Gordan Zitkovic, 2009. "Partial Equilibria with Convex Capital Requirements: Existence, Uniqueness and Stability," Papers 0901.3318, arXiv.org.
    8. Michail Anthropelos & Gordan Žitković, 2010. "Partial equilibria with convex capital requirements: existence, uniqueness and stability," Annals of Finance, Springer, vol. 6(1), pages 107-135, January.
    9. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    10. Markus Mocha & Nicholas Westray, 2011. "The Stability of the Constrained Utility Maximization Problem - A BSDE Approach," Papers 1107.0190, arXiv.org.
    11. Gordan Zitkovic, 2009. "An example of a stochastic equilibrium with incomplete markets," Papers 0906.0208, arXiv.org, revised Jun 2010.
    12. Pietro Siorpaes, 2013. "Optimal investment and price dependence in a semi-static market," Papers 1303.0237, arXiv.org, revised Oct 2013.
    13. Bayraktar, Erhan & Kravitz, Ross, 2013. "Stability of exponential utility maximization with respect to market perturbations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1671-1690.
    14. Kasper Larsen & Halil Mete Soner & Gordan Žitković, 2020. "Conditional Davis pricing," Finance and Stochastics, Springer, vol. 24(3), pages 565-599, July.
    15. Keita Owari, 2011. "On Admissible Strategies in Robust Utility Maximization," Papers 1109.5512, arXiv.org, revised Mar 2012.
    16. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    17. Kasper Larsen, 2009. "Continuity Of Utility‐Maximization With Respect To Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 237-250, April.
    18. Astrup Jensen, Bjarne & Marekwica, Marcel, 2011. "Optimal portfolio choice with wash sale constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1916-1937.
    19. Erhan Bayraktar & Yan Dolinsky & Jia Guo, 2018. "Continuity of Utility Maximization under Weak Convergence," Papers 1811.01420, arXiv.org, revised Jun 2020.
    20. Julio Backhoff Veraguas & Francisco Silva, 2015. "Sensitivity analysis for expected utility maximization in incomplete Brownian market models," Papers 1504.02734, arXiv.org, revised Feb 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.6160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.