IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v12y2002i2p99-123.html
   My bibliography  Save this article

Exponential Hedging and Entropic Penalties

Author

Listed:
  • Freddy Delbaen
  • Peter Grandits
  • Thorsten Rheinländer
  • Dominick Samperi
  • Martin Schweizer
  • Christophe Stricker

Abstract

We solve the problem of hedging a contingent claim B by maximizing the expected exponential utility of terminal net wealth for a locally bounded semimartingale X. We prove a duality relation between this problem and a dual problem for local martingale measures Q for X where we either minimize relative entropy minus a correction term involving B or maximize the Q‐price of B subject to an entropic penalty term. Our result is robust in the sense that it holds for several choices of the space of hedging strategies. Applications include a new characterization of the minimal martingale measure and risk‐averse asymptotics.

Suggested Citation

  • Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
  • Handle: RePEc:bla:mathfi:v:12:y:2002:i:2:p:99-123
    DOI: 10.1111/1467-9965.02001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.02001
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.02001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:12:y:2002:i:2:p:99-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.