IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0901.3318.html
   My bibliography  Save this paper

Partial Equilibria with Convex Capital Requirements: Existence, Uniqueness and Stability

Author

Listed:
  • Michail Anthropelos
  • Gordan Zitkovic

Abstract

In an incomplete semimartingale model of a financial market, we consider several risk-averse financial agents who negotiate the price of a bundle of contingent claims. Assuming that the agents' risk preferences are modelled by convex capital requirements, we define and analyze their demand functions and propose a notion of a partial equilibrium price. In addition to sufficient conditions for the existence and uniqueness, we also show that the equilibrium prices are stable with respect to misspecifications of agents' risk preferences.

Suggested Citation

  • Michail Anthropelos & Gordan Zitkovic, 2009. "Partial Equilibria with Convex Capital Requirements: Existence, Uniqueness and Stability," Papers 0901.3318, arXiv.org.
  • Handle: RePEc:arx:papers:0901.3318
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0901.3318
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.
    2. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    3. Bühlmann, Hans & Jewell, William S., 1979. "Optimal Risk Exchanges," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 243-262, December.
    4. Kasper Larsen & Gordan Zitkovic, 2007. "Stability of utility-maximization in incomplete markets," Papers 0706.0474, arXiv.org.
    5. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    6. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    7. Michail Anthropelos & Gordan Zitkovic, 2008. "On Agents' Agreement and Partial-Equilibrium Pricing in Incomplete Markets," Papers 0803.2198, arXiv.org.
    8. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    9. Damir Filipović & Michael Kupper, 2008. "Optimal Capital And Risk Transfers For Group Diversification," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 55-76, January.
    10. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    11. Damir Filipović & Michael Kupper, 2008. "Equilibrium Prices For Monetary Utility Functions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 325-343.
    12. Larsen, Kasper & Zitkovic, Gordan, 2007. "Stability of utility-maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1642-1662, November.
    13. Elyès Jouini & Clotilde Napp, 2004. "Convergence of utility functions and convergence of optimal strategies," Finance and Stochastics, Springer, vol. 8(1), pages 133-144, January.
    14. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    15. Bühlmann, Hans, 1984. "The General Economic Premium Principle," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 13-21, April.
    16. Gerber, Hans U., 1978. "Pareto-Optimal Risk Exchanges and Related Decision Problems," ASTIN Bulletin, Cambridge University Press, vol. 10(1), pages 25-33, May.
    17. Wyler, Erich, 1990. "Pareto Optimal Risk Exchanges and a System of Differential Equations: a Duality Theorem," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 23-31, April.
    18. Barrieu, Pauline & Scandolo, Giacomo, 2008. "General Pareto Optimal Allocations and Applications to Multi-Period Risks1," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 105-136, May.
    19. David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
    20. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Anthropelos & Gordan Žitković, 2010. "Partial equilibria with convex capital requirements: existence, uniqueness and stability," Annals of Finance, Springer, vol. 6(1), pages 107-135, January.
    2. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    3. Michail Anthropelos & Nikolaos E. Frangos & Stylianos Z. Xanthopoulos & Athanasios N. Yannacopoulos, 2008. "On contingent claims pricing in incomplete markets: A risk sharing approach," Papers 0809.4781, arXiv.org, revised Feb 2012.
    4. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    5. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    6. Kim Weston, 2014. "Stability of Utility Maximization in Nonequivalent Markets," Papers 1410.0915, arXiv.org, revised Jun 2015.
    7. Gordan Zitkovic, 2009. "An example of a stochastic equilibrium with incomplete markets," Papers 0906.0208, arXiv.org, revised Jun 2010.
    8. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    9. Gu, Lingqi & Lin, Yiqing & Yang, Junjian, 2016. "On the dual problem of utility maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1019-1035.
    10. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    11. Kasper Larsen & Halil Mete Soner & Gordan Žitković, 2020. "Conditional Davis pricing," Finance and Stochastics, Springer, vol. 24(3), pages 565-599, July.
    12. repec:hum:wpaper:sfb649dp2011-061 is not listed on IDEAS
    13. Hao Xing, 2012. "Stability of the exponential utility maximization problem with respect to preferences," Papers 1205.6160, arXiv.org, revised Sep 2013.
    14. Xing, Hao, 2017. "Stability of the exponential utility maximization problem with respect to preferences," LSE Research Online Documents on Economics 57213, London School of Economics and Political Science, LSE Library.
    15. Michail Anthropelos & Gordan Zitkovic, 2008. "On Agents' Agreement and Partial-Equilibrium Pricing in Incomplete Markets," Papers 0803.2198, arXiv.org.
    16. Gordan Žitković, 2012. "An example of a stochastic equilibrium with incomplete markets," Finance and Stochastics, Springer, vol. 16(2), pages 177-206, April.
    17. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    18. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2018. "Utility maximization with proportional transaction costs under model uncertainty," Papers 1805.06498, arXiv.org, revised Aug 2019.
    19. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    20. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.
    21. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.3318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.