IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.6631.html
   My bibliography  Save this paper

Implied Filtering Densities on Volatility's Hidden State

Author

Listed:
  • Carlos Fuertes
  • Andrew Papanicolaou

Abstract

We formulate and analyze an inverse problem using derivatives prices to obtain an implied filtering density on volatility's hidden state. Stochastic volatility is the unobserved state in a hidden Markov model (HMM) and can be tracked using Bayesian filtering. However, derivative data can be considered as conditional expectations that are already observed in the market, and which can be used as input to an inverse problem whose solution is an implied conditional density on volatility. Our analysis relies on a specification of the martingale change of measure, which we refer to as \textit{separability}. This specification has a multiplicative component that behaves like a risk premium on volatility uncertainty in the market. When applied to SPX options data, the estimated model and implied densities produce variance-swap rates that are consistent with the VIX volatility index. The implied densities are relatively stable over time and pick up some of the monthly effects that occur due to the options' expiration, indicating that the volatility-uncertainty premium could experience cyclic effects due to the maturity date of the options.

Suggested Citation

  • Carlos Fuertes & Andrew Papanicolaou, 2012. "Implied Filtering Densities on Volatility's Hidden State," Papers 1203.6631, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1203.6631
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.6631
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Jean-Pierre Fouque & George Papanicolaou & Ronnie Sircar & Knut Solna, 2004. "Maturity cycles in implied volatility," Finance and Stochastics, Springer, vol. 8(4), pages 451-477, November.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    5. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    6. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    7. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    11. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    2. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    4. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    5. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    6. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    7. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    8. Alexey MEDVEDEV & Olivier SCAILLET, 2004. "A Simple Calibration Procedure of Stochastic Volatility Models with Jumps by Short Term Asymptotics," FAME Research Paper Series rp93, International Center for Financial Asset Management and Engineering.
    9. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    10. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    11. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    12. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    13. Elisa Alòs & Jorge A. León & Josep Vives, 2006. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Economics Working Papers 968, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    15. Hamza Guennoun & Antoine Jacquier & Patrick Roome & Fangwei Shi, 2014. "Asymptotic behaviour of the fractional Heston model," Papers 1411.7653, arXiv.org, revised Aug 2017.
    16. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2018. "Quadratic approximation of the slow factor of volatility in a multifactor stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 607-624, May.
    17. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    18. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2005. "A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation," Review of Derivatives Research, Springer, vol. 8(1), pages 5-25, June.
    19. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2003. "A Comparison of q-optimal Option Prices in a Stochastic Volatility Model with Correlation," OFRC Working Papers Series 2003mf02, Oxford Financial Research Centre.
    20. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.6631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.