IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.0625.html
   My bibliography  Save this paper

Building portfolios of stocks in the S\~ao Paulo Stock Exchange using Random Matrix Theory

Author

Listed:
  • Leonidas Sandoval Junior
  • Adriana Bruscato
  • Maria Kelly Venezuela

Abstract

By using Random Matrix Theory, we build covariance matrices between stocks of the BM&F-Bovespa (Bolsa de Valores, Mercadorias e Futuros de S\~ao Paulo) which are cleaned of some of the noise due to the complex interactions between the many stocks and the finiteness of available data. We also use a regression model in order to remove the market effect due to the common movement of all stocks. These two procedures are then used to build stock portfolios based on Markowitz's theory, trying to obtain better predictions of future risk based on past data. This is done for years of both low and high volatility of the Brazilian stock market, from 2004 to 2010. The results show that the use of regression to subtract the market effect on returns greatly increases the accuracy of the prediction of risk, and that, although the cleaning of the correlation matrix often leads to portfolios that better predict risks, in periods of high volatility of the market this procedure may fail to do so.

Suggested Citation

  • Leonidas Sandoval Junior & Adriana Bruscato & Maria Kelly Venezuela, 2012. "Building portfolios of stocks in the S\~ao Paulo Stock Exchange using Random Matrix Theory," Papers 1201.0625, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:1201.0625
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.0625
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    2. Sharifi, S. & Crane, M. & Shamaie, A. & Ruskin, H., 2004. "Random matrix theory for portfolio optimization: a stability approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 629-643.
    3. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    4. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    5. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    6. Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
    7. Dickinson, J. P., 1974. "The Reliability of Estimation Procedures in Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(3), pages 447-462, June.
    8. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    9. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    10. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1972. "Estimation Risk in the Portfolio Selection Model: A Comment," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(1), pages 1423-1424, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalibor Eterovic & Nicolas Eterovic, 2012. "Separating the Wheat from the Chaff: Understanding Portfolio Returns in an Emerging Market," Working Papers wp_025, Adolfo Ibáñez University, School of Government.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas Junior & Bruscato, Adriana & Venezuela, Maria Kelly, 2012. "Building portfolios of stocks in the São Paulo Stock Exchange using Random Matrix Theory," Insper Working Papers wpe_270, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    2. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    3. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    4. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    5. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    6. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    7. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    8. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    9. David Stefanovits & Urs Schubiger & Mario V. Wüthrich, 2014. "Model Risk in Portfolio Optimization," Risks, MDPI, vol. 2(3), pages 1-34, August.
    10. Larry R. Gorman & Bjorn N. Jorgensen, 2002. "Domestic versus International Portfolio Selection: A Statistical Examination of the Home Bias," Multinational Finance Journal, Multinational Finance Journal, vol. 6(3-4), pages 131-166, September.
    11. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    12. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    13. Yuntaek Pae & Navid Sabbaghi, 2019. "Strategies for choosing an uncertainty budget in log-robust portfolio management," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-24, June.
    14. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    15. Hurley, W.J. & Brimberg, Jack, 2015. "A note on the sensitivity of the strategic asset allocation problem," Operations Research Perspectives, Elsevier, vol. 2(C), pages 133-136.
    16. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    17. Justo Puerto & Federica Ricca & Mois'es Rodr'iguez-Madrena & Andrea Scozzari, 2021. "A combinatorial optimization approach to scenario filtering in portfolio selection," Papers 2103.01123, arXiv.org.
    18. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.0625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.