IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v335y2004i3p629-643.html
   My bibliography  Save this article

Random matrix theory for portfolio optimization: a stability approach

Author

Listed:
  • Sharifi, S.
  • Crane, M.
  • Shamaie, A.
  • Ruskin, H.

Abstract

We apply random matrix theory (RMT) to an empirically measured financial correlation matrix, C, and show that this matrix contains a large amount of noise. In order to determine the sensitivity of the spectral properties of a random matrix to noise, we simulate a set of data and add different volumes of random noise. Having ascertained that the eigenspectrum is independent of the standard deviation of added noise, we use RMT to determine the noise percentage in a correlation matrix based on real data from S&P500. Eigenvalue and eigenvector analyses are applied and the experimental results for each of them are presented to identify qualitatively and quantitatively different spectral properties of the empirical correlation matrix to a random counterpart. Finally, we attempt to separate the noisy part from the non-noisy part of C. We apply an existing technique to cleaning C and then discuss its associated problems. We propose a technique of filtering C that has many advantages, from the stability point of view, over the existing method of cleaning.

Suggested Citation

  • Sharifi, S. & Crane, M. & Shamaie, A. & Ruskin, H., 2004. "Random matrix theory for portfolio optimization: a stability approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 629-643.
  • Handle: RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643
    DOI: 10.1016/j.physa.2003.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103011841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Plerou, V & Gopikrishnan, P & Rosenow, B & Amaral, L.A.N & Stanley, H.E, 2000. "A random matrix theory approach to financial cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 374-382.
    2. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    3. Plerou, V. & Gopikrishnan, P. & Rosenow, B. & Amaral, L.A.N. & Stanley, H.E., 2001. "Collective behavior of stock price movements—a random matrix theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 175-180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    2. Daly, J. & Crane, M. & Ruskin, H.J., 2008. "Random matrix theory filters in portfolio optimisation: A stability and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4248-4260.
    3. Eterovic, Nicolas A. & Eterovic, Dalibor S., 2013. "Separating the wheat from the chaff: Understanding portfolio returns in an emerging market," Emerging Markets Review, Elsevier, vol. 16(C), pages 145-169.
    4. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    5. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    6. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    7. G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
    8. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    9. M. Saeedian & T. Jamali & M. Z. Kamali & H. Bayani & T. Yasseri & G. R. Jafari, 2017. "Emergence of world-stock-market network," Papers 1703.08781, arXiv.org.
    10. Juan Pineiro-Chousa & Marcos Vizcaíno-González & Jérôme Caby, 2016. "Analysing voting behaviour in the United States banking sector through eigenvalue decomposition," Applied Economics Letters, Taylor & Francis Journals, vol. 23(12), pages 840-843, August.
    11. Stosic, Dusan & Stosic, Darko & Stosic, Tatijana, 2019. "Nonextensive triplets in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 192-198.
    12. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    13. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    14. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    15. Zhaoyuan Li & Maozai Tian, 2017. "A New Method For Dynamic Stock Clustering Based On Spectral Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 373-392, October.
    16. Dusan Stosic & Darko Stosic & Tatijana Stosic, 2019. "Nonextensive triplets in stock market indices," Papers 1901.07721, arXiv.org.
    17. Chakraborty, Abhijit & Hatsuda, Tetsuo & Ikeda, Yuichi, 2024. "Dynamic relationship between the XRP price and correlation tensor spectra of transaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    18. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    19. Ormerod, Paul & Mounfield, Craig, 2002. "The convergence of European business cycles 1978–2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(3), pages 494-504.
    20. Sharkasi, Adel & Crane, Martin & Ruskin, Heather J. & Matos, Jose A., 2006. "The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 511-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.