IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v06y2019i02ns2424786319500117.html
   My bibliography  Save this article

Strategies for choosing an uncertainty budget in log-robust portfolio management

Author

Listed:
  • Yuntaek Pae

    (Central Washington University, 2400 S 240th Street, Des Moines, WA 98198, United States)

  • Navid Sabbaghi

    (Saint Mary’s College, 1928 Saint Mary’s Road, Moraga, CA 94575, United States)

Abstract

This paper proposes six strategies for deciding upon “budget of uncertainty” parameters as input to a sequence of robust (portfolio) optimization problems over time, the solutions of which are a sequence of portfolios (i.e., a portfolio trajectory). Using 10 French Library datasets,1 the performance of the portfolio trajectories resulting from these strategies are compared with one another and the 1/n strategy. Before accounting for trading costs, all strategies result in portfolio trajectories that produce higher profit than the 1/n strategy. Even after accounting for trading costs (of 1% of trading volume), two of the strategies result in portfolio trajectories that have higher profit and lower risk compared to the 1/n strategy. Furthermore, we find that equal-weighted indices are better assets to manage than value-weighted indices in terms of achieving larger returns and lower risks.

Suggested Citation

  • Yuntaek Pae & Navid Sabbaghi, 2019. "Strategies for choosing an uncertainty budget in log-robust portfolio management," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-24, June.
  • Handle: RePEc:wsi:ijfexx:v:06:y:2019:i:02:n:s2424786319500117
    DOI: 10.1142/S2424786319500117
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2424786319500117
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786319500117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    2. Zellner, Arnold, 1985. "Bayesian Econometrics," Econometrica, Econometric Society, vol. 53(2), pages 253-269, March.
    3. Vijay K. Chopra & Chris R. Hensel & Andrew L. Turner, 1993. "Massaging Mean-Variance Inputs: Returns from Alternative Global Investment Strategies in the 1980s," Management Science, INFORMS, vol. 39(7), pages 845-855, July.
    4. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    5. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    6. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    7. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    8. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    9. Dickinson, J. P., 1974. "The Reliability of Estimation Procedures in Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(3), pages 447-462, June.
    10. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    11. Michael J. Best & Robert R. Grauer, 1991. "Sensitivity Analysis for Mean-Variance Portfolio Problems," Management Science, INFORMS, vol. 37(8), pages 980-989, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James DiLellio, 2015. "A Kalman filter control technique in mean-variance portfolio management," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 235-261, April.
    2. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    3. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    4. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    5. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    6. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    7. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Ching-Ping & Chiu, Chia-Yung, 2014. "Adjusting MV-efficient portfolio frontier bias for skewed and non-mesokurtic returns," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 59-83.
    8. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    9. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    10. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    11. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    12. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    13. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    14. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    15. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    16. Katrin Schöttle & Ralf Werner & Rudi Zagst, 2010. "Comparison and robustification of Bayes and Black-Litterman models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 453-475, June.
    17. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    18. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    19. Larry R. Gorman & Bjorn N. Jorgensen, 2002. "Domestic versus International Portfolio Selection: A Statistical Examination of the Home Bias," Multinational Finance Journal, Multinational Finance Journal, vol. 6(3-4), pages 131-166, September.
    20. Patrick Bielstein & Matthias X. Hanauer, 2019. "Mean-variance optimization using forward-looking return estimates," Review of Quantitative Finance and Accounting, Springer, vol. 52(3), pages 815-840, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:06:y:2019:i:02:n:s2424786319500117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.