IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1107.1831.html
   My bibliography  Save this paper

Adjoints and Automatic (Algorithmic) Differentiation in Computational Finance

Author

Listed:
  • Cristian Homescu

Abstract

Two of the most important areas in computational finance: Greeks and, respectively, calibration, are based on efficient and accurate computation of a large number of sensitivities. This paper gives an overview of adjoint and automatic differentiation (AD), also known as algorithmic differentiation, techniques to calculate these sensitivities. When compared to finite difference approximation, this approach can potentially reduce the computational cost by several orders of magnitude, with sensitivities accurate up to machine precision. Examples and a literature survey are also provided.

Suggested Citation

  • Cristian Homescu, 2011. "Adjoints and Automatic (Algorithmic) Differentiation in Computational Finance," Papers 1107.1831, arXiv.org.
  • Handle: RePEc:arx:papers:1107.1831
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1107.1831
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    2. C. Kaebe & J. Maruhn & E. Sachs, 2009. "Adjoint-based Monte Carlo calibration of financial market models," Finance and Stochastics, Springer, vol. 13(3), pages 351-379, September.
    3. Gabriel Turinici, 2009. "Calibration of local volatility using the local and implied instantaneous variance," Post-Print hal-00338114, HAL.
    4. Mark Joshi & Chao Yang, 2010. "Fast And Accurate Pricing And Hedging Of Long-Dated Cms Spread Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(06), pages 839-865.
    5. Houtan Bastani & Luca Guerrieri, 2008. "On the application of automatic differentiation to the likelihood function for dynamic general equilibrium models," International Finance Discussion Papers 920, Board of Governors of the Federal Reserve System (U.S.).
    6. Joshi, Mark & Pitt, David, 2010. "Fast Sensitivity Computations for Monte Carlo Valuation of Pension Funds," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 655-667, November.
    7. Joshi, Mark & Yang, Chao, 2011. "Efficient greek estimation in generic swap-rate market models," Algorithmic Finance, IOS Press, vol. 1(1), pages 17-33.
    8. Luca Capriotti & Mike Giles, 2010. "Fast Correlation Greeks by Adjoint Algorithmic Differentiation," Papers 1004.1855, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    2. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    3. Joshi, Mark & Tang, Robert, 2014. "Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 25-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    2. Siamak Akbarzadeh & Jan Hückelheim & Jens-Dominik Müller, 2020. "Consistent treatment of incompletely converged iterative linear solvers in reverse-mode algorithmic differentiation," Computational Optimization and Applications, Springer, vol. 77(2), pages 597-616, November.
    3. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    4. Eichler Andreas & Leobacher Gunther & Zellinger Heidrun, 2011. "Calibration of financial models using quasi-Monte Carlo," Monte Carlo Methods and Applications, De Gruyter, vol. 17(2), pages 99-131, January.
    5. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    6. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    7. Jiun Hong Chan and Mark Joshi, 2012. "Optimal Limit Methods for Computing Sensitivities of," Department of Economics - Working Papers Series 1142, The University of Melbourne.
    8. Gabriel Turinici, 2009. "Robust recovery of the risk neutral probability density from option prices," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 56, pages 197-201, November.
    9. Mark Joshi & Chao Yang, 2010. "Fast And Accurate Pricing And Hedging Of Long-Dated Cms Spread Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(06), pages 839-865.
    10. F. Gerlich & A. Giese & J. Maruhn & E. Sachs, 2012. "Parameter identification in financial market models with a feasible point SQP algorithm," Computational Optimization and Applications, Springer, vol. 51(3), pages 1137-1161, April.
    11. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
    12. Joshi, Mark & Tang, Robert, 2014. "Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 25-45.
    13. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    14. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    15. Adolfson, Malin & Lindé, Jesper, 2011. "Parameter Identification in a Estimated New Keynesian Open Economy Model," Working Paper Series 251, Sveriges Riksbank (Central Bank of Sweden).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.1831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.