IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v77y2020i2d10.1007_s10589-020-00214-x.html
   My bibliography  Save this article

Consistent treatment of incompletely converged iterative linear solvers in reverse-mode algorithmic differentiation

Author

Listed:
  • Siamak Akbarzadeh

    (Queen Mary University of London (SEMS))

  • Jan Hückelheim

    (Queen Mary University of London (SEMS))

  • Jens-Dominik Müller

    (Queen Mary University of London (SEMS))

Abstract

Algorithmic differentiation (AD) is a widely-used approach to compute derivatives of numerical models. Many numerical models include an iterative process to solve non-linear systems of equations. To improve efficiency and numerical stability, AD is typically not applied to the linear solvers. Instead, the differentiated linear solver call is replaced with hand-produced derivative code that exploits the linearity of the original call. In practice, the iterative linear solvers are often stopped prematurely to recompute the linearisation of the non-linear outer loop. We show that in the reverse-mode of AD, the derivatives obtained with partial convergence become inconsistent with the original and the tangent-linear models, resulting in inaccurate adjoints. We present a correction term that restores consistency between adjoint and tangent-linear gradients if linear systems are only partially converged. We prove the consistency of this correction term and show in numerical experiments that the accuracy of adjoint gradients of an incompressible flow solver applied to an industrial test case is restored when the correction term is used.

Suggested Citation

  • Siamak Akbarzadeh & Jan Hückelheim & Jens-Dominik Müller, 2020. "Consistent treatment of incompletely converged iterative linear solvers in reverse-mode algorithmic differentiation," Computational Optimization and Applications, Springer, vol. 77(2), pages 597-616, November.
  • Handle: RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00214-x
    DOI: 10.1007/s10589-020-00214-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00214-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00214-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Capriotti & Mike Giles, 2010. "Fast Correlation Greeks by Adjoint Algorithmic Differentiation," Papers 1004.1855, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    2. Cristian Homescu, 2011. "Adjoints and Automatic (Algorithmic) Differentiation in Computational Finance," Papers 1107.1831, arXiv.org.
    3. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00214-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.