IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v37y2013i4p774-793.html
   My bibliography  Save this article

A flexible matrix Libor model with smiles

Author

Listed:
  • Da Fonseca, José
  • Gnoatto, Alessandro
  • Grasselli, Martino

Abstract

We present a flexible approach for the valuation of interest rate derivatives based on affine processes. We extend the methodology proposed in Keller-Ressel et al. (in press) by changing the choice of the state space. We provide semi-closed-form solutions for the pricing of caps and floors. We then show that it is possible to price swaptions in this multifactor setting with a good degree of analytical tractability. This is done via the Edgeworth expansion approach developed in Collin-Dufresne and Goldstein (2002). A numerical exercise illustrates the flexibility of Wishart Libor model in describing the movements of the implied volatility surface.

Suggested Citation

  • Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
  • Handle: RePEc:eee:dyncon:v:37:y:2013:i:4:p:774-793
    DOI: 10.1016/j.jedc.2012.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188912002291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2012.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    2. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    3. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    4. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    5. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    6. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    7. Gourieroux, Christian & Sufana, Razvan, 2010. "Derivative Pricing With Wishart Multivariate Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 438-451.
    8. José Da Fonseca & Martino Grasselli & Florian Ielpo, 2011. "Hedging (Co)Variance Risk With Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 899-943.
    9. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    10. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    11. Alessandro Gnoatto, 2012. "The Wishart Short Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-24.
    12. Kenneth J. Singleton & Len Umantsev, 2002. "Pricing Coupon‐Bond Options And Swaptions In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 427-446, October.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    15. D. Brigo & F. Mercurio, 2003. "Analytical pricing of the smile in a forward LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 15-27.
    16. José da Fonseca & Martino Grasselli, 2011. "Riding on the smiles," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1609-1632.
    17. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    18. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    19. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    20. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    21. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    22. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    23. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    24. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    25. Zorana Grbac & Antonis Papapantoleon, 2012. "A tractable LIBOR model with default risk," Papers 1202.0587, arXiv.org, revised Oct 2012.
    26. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
    27. Vladimir Piterbarg, 2005. "Stochastic Volatility Model with Time-dependent Skew," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 147-185.
    28. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    29. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rama Cont & Lakshithe Wagalath, 2014. "Institutional Investors and the Dependence Structure of Asset Returns," Working Papers 2014-ACF-01, IESEG School of Management.
    2. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    3. Rama Cont & Lakshithe Wagalath, 2016. "Institutional Investors And The Dependence Structure Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-37, March.
    4. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    5. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    6. Guarin, Alexander & Liu, Xiaoquan & Ng, Wing Lon, 2014. "Recovering default risk from CDS spreads with a nonlinear filter," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 87-104.
    7. Stefan Waldenberger & Wolfgang Muller, 2015. "Affine LIBOR models driven by real-valued affine processes," Papers 1503.00864, arXiv.org.
    8. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    9. Francesca Biagini & Alessandro Gnoatto & Maximilian Hartel, 2013. "Affine HJM Framework on $S_{d}^{+}$ and Long-Term Yield," Papers 1311.0688, arXiv.org, revised Aug 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    2. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    3. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    6. Francesca Biagini & Alessandro Gnoatto & Maximilian Hartel, 2013. "Affine HJM Framework on $S_{d}^{+}$ and Long-Term Yield," Papers 1311.0688, arXiv.org, revised Aug 2015.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Alessandro Gnoatto, 2012. "The Wishart Short Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-24.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Lixin Wu & Fan Zhang, 2008. "Fast swaption pricing under the market model with a square-root volatility process," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 163-180.
    11. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    12. A. M. Ferreiro & J. A. Garc'ia & J. G. L'opez-Salas & C. V'azquez, 2024. "SABR/LIBOR market models: pricing and calibration for some interest rate derivatives," Papers 2408.01470, arXiv.org.
    13. L. Steinruecke & R. Zagst & A. Swishchuk, 2015. "The Markov-switching jump diffusion LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 455-476, March.
    14. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    15. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
    16. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
    17. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    18. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    19. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    20. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.

    More about this item

    Keywords

    Affine processes; Wishart process; Libor market model; Fast Fourier transform; Caps; Floors; Swaptions;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:37:y:2013:i:4:p:774-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.