IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1102.2412.html
   My bibliography  Save this paper

Statistical Inference for Time-changed Brownian Motion Credit Risk Models

Author

Listed:
  • T. R. Hurd
  • Zhuowei Zhou

Abstract

We consider structural credit modeling in the important special case where the log-leverage ratio of the firm is a time-changed Brownian motion (TCBM) with the time-change taken to be an independent increasing process. Following the approach of Black and Cox, one defines the time of default to be the first passage time for the log-leverage ratio to cross the level zero. Rather than adopt the classical notion of first passage, with its associated numerical challenges, we accept an alternative notion applicable for TCBMs called "first passage of the second kind". We demonstrate how statistical inference can be efficiently implemented in this new class of models. This allows us to compare the performance of two versions of TCBMs, the variance gamma (VG) model and the exponential jump model (EXP), to the Black-Cox model. When applied to a 4.5 year long data set of weekly credit default swap (CDS) quotes for Ford Motor Co, the conclusion is that the two TCBM models, with essentially one extra parameter, can significantly outperform the classic Black-Cox model.

Suggested Citation

  • T. R. Hurd & Zhuowei Zhou, 2011. "Statistical Inference for Time-changed Brownian Motion Credit Risk Models," Papers 1102.2412, arXiv.org.
  • Handle: RePEc:arx:papers:1102.2412
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1102.2412
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    3. T. R. Hurd, 2009. "Credit Risk Modeling Using Time-Changed Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1213-1230.
    4. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    2. Omar, Arti & Prasanna, P. Krishna, 2021. "Asymmetric effects of noise in Merton default risk model: Evidence from emerging Asia," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    3. Thomas R. Hurd & Zhuowei Zhou, 2011. "Two-factor capital structure models for equity and credit," Papers 1110.5846, arXiv.org.
    4. Masaaki Kijima & Chi Chung Siu, 2014. "Credit-Equity Modeling Under A Latent Lévy Firm Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-41.
    5. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    6. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    7. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    8. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    9. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    10. Iftekhar Hasan & Liuling Liu & Gaiyan Zhang, 2016. "The Determinants of Global Bank Credit-Default-Swap Spreads," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 275-309, December.
    11. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    12. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    13. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    14. Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
    15. Miao, Hong & Ramchander, Sanjay & Ryan, Patricia & Wang, Tianyang, 2018. "Default prediction models: The role of forward-looking measures of returns and volatility," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 146-162.
    16. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Evangelos C. Charalambakis & Ian Garrett, 2016. "On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 1-28, July.
    18. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    19. Ruey-Ching Hwang & Jhao-Siang Siao & Huimin Chung & C. Chu, 2011. "Assessing bankruptcy prediction models via information content of technical inefficiency," Journal of Productivity Analysis, Springer, vol. 36(3), pages 263-273, December.
    20. Correia, Maria & Kang, Johnny & Richardson, Scott, 2018. "Asset volatility," LSE Research Online Documents on Economics 84405, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.2412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.