IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1110.5846.html
   My bibliography  Save this paper

Two-factor capital structure models for equity and credit

Author

Listed:
  • Thomas R. Hurd
  • Zhuowei Zhou

Abstract

We extend the now classic structural credit modeling approach of Black and Cox to a class of "two-factor" models that unify equity securities such as options written on the stock price, and credit products like bonds and credit default swaps. In our approach, the two sides of the stylized balance sheet of a firm, namely the asset value and debt value, are assumed to follow a two dimensional Markov process. Amongst models of this type we find examples that lead to derivative pricing formulas that are capable of reproducing the main features of well known equity models such as the variance gamma model, and at the same time reproducing the stylized facts about default stemming from structural models of credit risk. Moreover, in contrast to one-factor structural models, these models allow for much more flexible dependence between equity and credit markets. Two main technical obstacles to efficient implementation of these pricing formulas are overcome in our paper. The first obstacle stems from the barrier condition implied by the non-default of the firm, and is overcome by the idea of time-changing Brownian motion in a way that preserves the reflection principle for Brownian motion. The second obstacle is the difficulty of computing spread options: this is overcome by using results in recent papers that make efficient use of the two dimensional Fast Fourier Transform.

Suggested Citation

  • Thomas R. Hurd & Zhuowei Zhou, 2011. "Two-factor capital structure models for equity and credit," Papers 1110.5846, arXiv.org.
  • Handle: RePEc:arx:papers:1110.5846
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1110.5846
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    2. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    5. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    6. T. R. Hurd, 2009. "Credit Risk Modeling Using Time-Changed Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1213-1230.
    7. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    8. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Kijima & Chi Chung Siu, 2014. "Credit-Equity Modeling Under A Latent Lévy Firm Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    2. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    3. Murphy, Austin & Headley, Adrian, 2022. "An empirical evaluation of alternative fundamental models of credit spreads," International Review of Financial Analysis, Elsevier, vol. 81(C).
    4. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    5. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    6. Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    7. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    10. Yildirim, Yildiray, 2006. "Modeling default risk: A new structural approach," Finance Research Letters, Elsevier, vol. 3(3), pages 165-172, September.
    11. Giesecke, Kay, 2006. "Default and information," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2281-2303, November.
    12. Su-Lien Lu & Kuo-Jung Lee, 2021. "Investigating the Determinants of Credit Spread Using a Markov Regime-Switching Model: Evidence from Banks in Taiwan," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    13. repec:wyi:journl:002109 is not listed on IDEAS
    14. Ericsson, Jan & Jacobs, Kris & Oviedo, Rodolfo, 2009. "The Determinants of Credit Default Swap Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 109-132, February.
    15. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    16. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    18. Augustin, Patrick & Subrahmanyam, Marti G. & Tang, Dragon Yongjun & Wang, Sarah Qian, 2014. "Credit Default Swaps: A Survey," Foundations and Trends(R) in Finance, now publishers, vol. 9(1-2), pages 1-196, December.
    19. Giesecke, Kay, 2001. "Default compensator, incomplete information, and the term structure of credit spreads," SFB 373 Discussion Papers 2002,8, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Michael Jacobs, Jr, 2011. "An option theoretic model for ultimate loss-given-default with systematic recovery risk and stochastic returns on defaulted debt," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 257-285, Bank for International Settlements.
    21. Sottile, Pedro, 2013. "On the political determinants of sovereign risk: Evidence from a Markov-switching vector autoregressive model for Argentina," Emerging Markets Review, Elsevier, vol. 15(C), pages 160-185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.5846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.