IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.1534.html
   My bibliography  Save this paper

Evolutionary multi-stage financial scenario tree generation

Author

Listed:
  • Ronald Hochreiter

Abstract

Multi-stage financial decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future returns of the selected assets or asset categories. Various approaches towards an optimal generation of discrete-time, discrete-state approximations (represented as scenario trees) have been suggested in the literature. In this paper, a new evolutionary algorithm to create scenario trees for multi-stage financial optimization models will be presented. Numerical results and implementation details conclude the paper.

Suggested Citation

  • Ronald Hochreiter, 2009. "Evolutionary multi-stage financial scenario tree generation," Papers 0912.1534, arXiv.org, revised Jan 2010.
  • Handle: RePEc:arx:papers:0912.1534
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.1534
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald Hochreiter & Georg Pflug, 2007. "Financial scenario generation for stochastic multi-stage decision processes as facility location problems," Annals of Operations Research, Springer, vol. 152(1), pages 257-272, July.
    2. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    2. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    3. Balibek, Emre & Köksalan, Murat, 2010. "A multi-objective multi-period stochastic programming model for public debt management," European Journal of Operational Research, Elsevier, vol. 205(1), pages 205-217, August.
    4. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    5. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    6. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    7. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    8. Ekblom, J. & Blomvall, J., 2020. "Importance sampling in stochastic optimization: An application to intertemporal portfolio choice," European Journal of Operational Research, Elsevier, vol. 285(1), pages 106-119.
    9. Xiaoshi Guo & Sarah M. Ryan, 2021. "Reliability assessment of scenarios generated for stock index returns incorporating momentum," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4013-4031, July.
    10. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    11. Consiglio, Andrea & Carollo, Angelo & Zenios, Stavros A., 2014. "Generating Multi-factor Arbitrage-Free Scenario Trees with Global Optimization," Working Papers 13-35, University of Pennsylvania, Wharton School, Weiss Center.
    12. Sun, Qi & Dong, Yucheng & Xu, Weidong, 2013. "Effects of higher order moments on the newsvendor problem," International Journal of Production Economics, Elsevier, vol. 146(1), pages 167-177.
    13. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    14. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "A dynamic stochastic programming model for international portfolio management," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1501-1524, March.
    15. Agnieszka Konicz & David Pisinger & Alex Weissensteiner, 2015. "Optimal annuity portfolio under inflation risk," Computational Management Science, Springer, vol. 12(3), pages 461-488, July.
    16. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    17. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    18. Caio Mário Mesquita & Cristiano Arbex Valle & Adriano César Machado Pereira, 2024. "Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1879-1919, May.
    19. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    20. Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.1534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.