IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp126-134.html
   My bibliography  Save this article

A bivariate risk model with mutual deficit coverage

Author

Listed:
  • Ivanovs, Jevgenijs
  • Boxma, Onno

Abstract

We consider a bivariate Cramér–Lundberg-type risk reserve process with the special feature that each insurance company agrees to cover the deficit of the other. It is assumed that the capital transfers between the companies are instantaneous and incur a certain proportional cost, and that ruin occurs when neither company can cover the deficit of the other. We study the survival probability as a function of initial capitals and express its bivariate transform through two univariate boundary transforms, where one of the initial capitals is fixed at 0. We identify these boundary transforms in the case when claims arriving at each company form two independent processes. The expressions are in terms of Wiener–Hopf factors associated to two auxiliary compound Poisson processes. The case of non-mutual agreement is also considered. The proposed model shares some features of a contingent surplus note instrument and may be of interest in the context of crisis management.

Suggested Citation

  • Ivanovs, Jevgenijs & Boxma, Onno, 2015. "A bivariate risk model with mutual deficit coverage," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 126-134.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:126-134
    DOI: 10.1016/j.insmatheco.2015.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Iseger & Paul Gruntjes & Michel Mandjes, 2013. "A Wiener–Hopf based approach to numerical computations in fluctuation theory for Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 101-118, August.
    2. Avram, Florin & Palmowski, Zbigniew & Pistorius, Martijn, 2008. "A two-dimensional ruin problem on the positive quadrant," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 227-234, February.
    3. Cai, Jun & Li, Haijun, 2005. "Multivariate risk model of phase type," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 137-152, April.
    4. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    5. Cai, Jun & Li, Haijun, 2007. "Dependence properties and bounds for ruin probabilities in multivariate compound risk models," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 757-773, April.
    6. Sundt, Bjørn, 1999. "On Multivariate Panjer Recursions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 29-45, May.
    7. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    8. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    9. Kella, Offer, 2006. "Reflecting thoughts," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1808-1811, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordienko, E. & Vázquez-Ortega, P., 2018. "Continuity inequalities for multidimensional renewal risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 48-54.
    2. Avram, F. & Badescu, A.L. & Pistorius, M.R. & Rabehasaina, L., 2016. "On a class of dependent Sparre Andersen risk models and a bailout application," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 27-39.
    3. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.
    4. Ernst, Philip A. & Franceschi, Sandro & Huang, Dongzhou, 2021. "Escape and absorption probabilities for obliquely reflected Brownian motion in a quadrant," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 634-670.
    5. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2015. "Optimal Dividend Strategies for Two Collaborating Insurance Companies," Papers 1505.03980, arXiv.org.
    6. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    7. Sandro Franceschi & Kilian Raschel, 2022. "A dual skew symmetry for transient reflected Brownian motion in an orthant," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 123-141, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.
    2. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    3. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    4. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    5. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    6. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    7. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    8. Gordienko, E. & Vázquez-Ortega, P., 2018. "Continuity inequalities for multidimensional renewal risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 48-54.
    9. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    10. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    11. Shen, Xinmei & Zhang, Yi, 2013. "Ruin probabilities of a two-dimensional risk model with dependent risks of heavy tail," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1787-1799.
    12. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    13. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    14. Cai, Jun & Li, Haijun, 2007. "Dependence properties and bounds for ruin probabilities in multivariate compound risk models," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 757-773, April.
    15. Eisele, Karl-Theodor, 2008. "Recursions for multivariate compound phase variables," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 65-72, February.
    16. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    17. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    18. Cheng, Ming & Konstantinides, Dimitrios G. & Wang, Dingcheng, 2022. "Uniform asymptotic estimates in a time-dependent risk model with general investment returns and multivariate regularly varying claims," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    19. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2015. "Optimal Dividend Strategies for Two Collaborating Insurance Companies," Papers 1505.03980, arXiv.org.
    20. Li, Junhai & Liu, Zaiming & Tang, Qihe, 2007. "On the ruin probabilities of a bidimensional perturbed risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 185-195, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:126-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.