IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0904.1067.html
   My bibliography  Save this paper

The Structural Modelling of Operational Risk via Bayesian inference: Combining Loss Data with Expert Opinions

Author

Listed:
  • P. V. Shevchenko
  • M. V. Wuthrich

Abstract

To meet the Basel II regulatory requirements for the Advanced Measurement Approaches, the bank's internal model must include the use of internal data, relevant external data, scenario analysis and factors reflecting the business environment and internal control systems. Quantification of operational risk cannot be based only on historical data but should involve scenario analysis. Historical internal operational risk loss data have limited ability to predict future behaviour moreover, banks do not have enough internal data to estimate low frequency high impact events adequately. Historical external data are difficult to use due to different volumes and other factors. In addition, internal and external data have a survival bias, since typically one does not have data of all collapsed companies. The idea of scenario analysis is to estimate frequency and severity of risk events via expert opinions taking into account bank environment factors with reference to events that have occurred (or may have occurred) in other banks. Scenario analysis is forward looking and can reflect changes in the banking environment. It is important to not only quantify the operational risk capital but also provide incentives to business units to improve their risk management policies, which can be accomplished through scenario analysis. By itself, scenario analysis is very subjective but combined with loss data it is a powerful tool to estimate operational risk losses. Bayesian inference is a statistical technique well suited for combining expert opinions and historical data. In this paper, we present examples of the Bayesian inference methods for operational risk quantification.

Suggested Citation

  • P. V. Shevchenko & M. V. Wuthrich, 2009. "The Structural Modelling of Operational Risk via Bayesian inference: Combining Loss Data with Expert Opinions," Papers 0904.1067, arXiv.org.
  • Handle: RePEc:arx:papers:0904.1067
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0904.1067
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    2. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    2. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    3. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    4. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    5. Hans Buhlmann & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "A "Toy" Model for Operational Risk Quantification using Credibility Theory," Papers 0904.1772, arXiv.org.
    6. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    7. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    8. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    9. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    10. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    11. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    12. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    13. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    14. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    15. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    16. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    17. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    18. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    19. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    20. Jianping Li & Lu Wei & Cheng-Few Lee & Xiaoqian Zhu & Dengsheng Wu, 2018. "Financial statements based bank risk aggregation," Review of Quantitative Finance and Accounting, Springer, vol. 50(3), pages 673-694, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.1067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.