IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i2p163-172.html
   My bibliography  Save this article

Pareto Equilibria with coherent measures of risk

Author

Listed:
  • David Heath
  • Hyejin Ku

Abstract

In this paper, we provide a definition of Pareto equilibrium in terms of risk measures, and present necessary and sufficient conditions for equilibrium in a market with finitely many traders (whom we call “banks”) who trade with each other in a financial market. Each bank has a preference relation on random payoffs which is monotonic, complete, transitive, convex, and continuous; we show that this, together with the current position of the bank, leads to a family of valuation measures for the bank. We show that a market is in Pareto equilibrium if and only if there exists a (possibly signed) measure that, for each bank, agrees with a positive convex combination of all valuation measures used by that bank on securities traded by that bank.

Suggested Citation

  • David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:2:p:163-172
    DOI: 10.1111/j.0960-1627.2004.00187.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00187.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00187.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:2:p:163-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.