IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i7p780-796.html
   My bibliography  Save this article

Integer programming approaches to find row–column arrangements of two-level orthogonal experimental designs

Author

Listed:
  • Nha Vo-Thanh
  • Peter Goos
  • Eric D. Schoen

Abstract

Design of experiments is an effective, generic methodology for problem solving as well as for improving or optimizing product design and manufacturing processes. The most commonly used experimental designs are two-level fractional factorial designs. In recent years, nonregular fractional factorial two-level experimental designs have gained much popularity compared to the traditional regular fractional factorial designs, because they offer more flexibility in terms of run size as well as the possibility to estimate partially aliased effects. For this reason, there is much interest in finding good nonregular designs, and in orthogonal blocking arrangements of these designs. In this contribution, we address the problem of finding orthogonal blocking arrangements of high-quality nonregular two-level designs in scenarios with two crossed blocking factors. We call these blocking arrangements orthogonal row-column arrangements. We propose two strategies to find row-column arrangements of given two-level orthogonal treatment designs such that the treatment factors’ main effects are orthogonal to both blocking factors. The first strategy involves a sequential approach which is especially useful when one blocking factor is more important than the other. The second strategy involves a simultaneous approach for situations where both blocking factors are equally important. For the latter approach, we propose three different optimization models, so that, in total, we consider four different methods to obtain row-column arrangements. We compare the performance of the four methods by looking for good row-column arrangements of the best two-level 24-run orthogonal designs in terms of the G-aberration criterion, and apply the best of these methods to 64- and 72-run orthogonal designs.

Suggested Citation

  • Nha Vo-Thanh & Peter Goos & Eric D. Schoen, 2020. "Integer programming approaches to find row–column arrangements of two-level orthogonal experimental designs," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 780-796, July.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:7:p:780-796
    DOI: 10.1080/24725854.2019.1655608
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1655608
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1655608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Goos, P. & Donev, A.N., 2006. "Blocking response surface designs," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1075-1088, November.
    2. Eric D. Schoen & Robert W. Mee, 2012. "Two‐level designs of strength 3 and up to 48 runs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(1), pages 163-174, January.
    3. SCHOEN, Eric D. & MEE, Robert W., 2012. "Two-level designs of strength 3 and up to 48 runs," Working Papers 2012005, University of Antwerp, Faculty of Business and Economics.
    4. M. Jacroux & R. SahaRay, 1990. "On the construction of trend free row-column 2-level factorial experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 37(1), pages 163-180, December.
    5. SCHOEN, Eric D. & SARTONO, Bagus & GOOS, Peter, 2012. "Optimal blocking for general resolution-3 designs," Working Papers 2012025, University of Antwerp, Faculty of Business and Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SCHOEN, Eric D. & VO-THANH, Nha & GOOS, Peter, 2015. "Two-level orthogonal designs in 24 and 28 runs," Working Papers 2015016, University of Antwerp, Faculty of Business and Economics.
    2. VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.
    3. SARTONO, Bagus & GOOS, Peter & SCHOEN, Eric D., 2012. "Orthogonal blocking of regular and non-regular strength-3 designs," Working Papers 2012026, University of Antwerp, Faculty of Business and Economics.
    4. VÁZQUEZ-ALCOCER, Alan & GOOS, Peter & SCHOEN, Eric D., 2016. "Two-level designs constructed by concatenating orthogonal arrays of strenght three," Working Papers 2016011, University of Antwerp, Faculty of Business and Economics.
    5. EENDEBAK, Pieter T. & SCHOEN, Eric D., 2015. "Two-level designs to estimate all main effects and two-factor interactions," Working Papers 2015019, University of Antwerp, Faculty of Business and Economics.
    6. Zhou, Qi & Guo, Bing, 2017. "A note on constructing clear compromise plans," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 17-24.
    7. Eendebak, Pieter T. & Schoen, Eric D. & Vazquez, Alan R. & Goos, Peter, 2023. "Systematic enumeration of two-level even-odd designs of strength 3," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    8. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    9. Peter Goos, 2006. "Optimal versus orthogonal and equivalent‐estimation design of blocked and split‐plot experiments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(3), pages 361-378, August.
    10. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    11. Loeza-Serrano, S. & Donev, A.N., 2014. "Construction of experimental designs for estimating variance components," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1168-1177.
    12. SCHOEN, Eric D. & VO-THANH, Nha & GOOS, Peter, 2016. "Orthogonal blocking arrangements for 24-run and 28-run two-level designs," Working Papers 2016002, University of Antwerp, Faculty of Business and Economics.
    13. Rodney N. Edmondson, 2020. "Multi-level Block Designs for Comparative Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 500-522, December.
    14. Georgiou, Stelios D. & Stylianou, Stella & Aggarwal, Manohar, 2014. "A class of composite designs for response surface methodology," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1124-1133.
    15. Eugene C. Ukaegbu & Polycarp E. Chigbu, 2017. "Evaluation of Orthogonally Blocked Central Composite Designs with Partial Replications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 112-141, May.
    16. Peter Goos & Alexander Donev, 2007. "$$\mathcal{D}$$ -optimal Minimum Support Mixture Designs in Blocks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(1), pages 53-68, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:7:p:780-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.