IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v105y2017icp243-267.html
   My bibliography  Save this article

Robust estimation in stochastic frontier models

Author

Listed:
  • Song, Junmo
  • Oh, Dong-hyun
  • Kang, Jiwon

Abstract

This study proposes a robust estimator for stochastic frontier models by integrating the idea of Basu et al. (1998) into such models. It is shown that the suggested estimator is strongly consistent and asymptotic normal under regularity conditions. The robust properties of the proposed approach are also investigated. A simulation study demonstrates that the estimator has strong robust properties with little loss in asymptotic efficiency relative to the maximum likelihood estimator. Finally, a real data analysis is performed to illustrate the use of the estimator.

Suggested Citation

  • Song, Junmo & Oh, Dong-hyun & Kang, Jiwon, 2017. "Robust estimation in stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 243-267.
  • Handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:243-267
    DOI: 10.1016/j.csda.2016.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301864
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    2. Kopp, Raymond J. & Mullahy, John, 1990. "Moment-based estimation and testing of stochastic frontier models," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 165-183.
    3. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2012. "Regularization of nonparametric frontier estimators," Journal of Econometrics, Elsevier, vol. 168(2), pages 285-299.
    4. Kim, Byungsoo & Lee, Sangyeol, 2013. "Robust estimation for the covariance matrix of multivariate time series based on normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 125-140.
    5. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    6. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    7. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    8. PARK, Byeong & SIMAR, Léopold, 1992. "Efficient semiparametric estimation in stochastic frontier model," LIDAM Discussion Papers CORE 1992013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    10. Park, B. U. & Sickles, R. C. & Simar, L., 1998. "Stochastic panel frontiers: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 84(2), pages 273-301, June.
    11. Bruffaerts, C. & De Rock, B. & Dehon, C., 2013. "The robustness of the hyperbolic efficiency estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 349-363.
    12. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    13. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    14. Sangyeol Lee & Junmo Song, 2009. "Minimum density power divergence estimator for GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 316-341, August.
    15. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time‐series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
    16. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    17. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    18. Florens, Jean-Pierre & Simar, Leopold, 2005. "Parametric approximations of nonparametric frontiers," Journal of Econometrics, Elsevier, vol. 124(1), pages 91-116, January.
    19. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    20. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    21. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    22. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    23. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    2. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    3. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.
    4. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
    3. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    4. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    5. Christopher Bruffaerts & Bram De Rock & Catherine Dehon, 2014. "Outlier Detection in Nonparametric Frontier Models," Working Papers ECARES ECARES 2014-12, ULB -- Universite Libre de Bruxelles.
    6. Rien J. L. M. Wagenvoort & Paul H. Schure, 2006. "A Recursive Thick Frontier Approach to Estimating Production Efficiency," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(2), pages 183-201, April.
    7. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    10. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    11. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    12. Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
    13. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    14. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    15. David C. Wheelock & Paul W. Wilson, 2009. "Robust, dynamic nonparametric benchmarking: the evolution of cost-productivity and efficiency among U.S. credit unions," Working Papers 2009-008, Federal Reserve Bank of St. Louis.
    16. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    17. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    18. Kortelainen, Mika, 2008. "Estimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies," MPRA Paper 9257, University Library of Munich, Germany.
    19. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    20. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:243-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.