IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2016007.html
   My bibliography  Save this paper

Unobserved heterogeneity and endogeneity in nonparametric frontier estimation

Author

Listed:
  • Simar, Leopold
  • Vanhems, Anne
  • Van Keilegom, Ingrid

Abstract

In production theory, firm efficiencies are measured by their distances to a production frontier. In the presence of heterogeneous conditions (like environmental factors) that may influence the shape and the position of the frontier, traditional measures of efficiency obtained in the space of inputs/outputs are difficult to interpret, since they mix managerial inefficiency and shift of the frontier. This can be corrected by using nonparametric conditional efficiencies. In this paper we extend these concepts in the case where the heterogeneity is not observed. We propose a model where the heterogeneity variable is linked to a particular input (or output). It is defined as the part of the input (or the output), independent from some instrumental variable through a nonseparable nonparametric model. We discuss endogeneity issues involved in this model. We show that the model is identified and analyze the asymptotic properties of proposed nonparametric estimators. When using FDH estimators we achieve a limiting Weibull distribution, whereas when using the robust order-m estimators we obtain the asymptotic normality. The method is illustrated with some simulated and real data examples. A Monte-Carlo experiment shows how the procedure works for finite samples.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Simar, Leopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," LIDAM Reprints ISBA 2016007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2016007
    Note: In : Journal of Econometrics, vol. 190, p. 360-373 (2016)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    2. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    3. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    4. Florens, Jean-Pierre & Simar, Leopold, 2005. "Parametric approximations of nonparametric frontiers," Journal of Econometrics, Elsevier, vol. 124(1), pages 91-116, January.
    5. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    6. Jinyong Hahn & Geert Ridder, 2013. "Asymptotic Variance of Semiparametric Estimators With Generated Regressors," Econometrica, Econometric Society, vol. 81(1), pages 315-340, January.
    7. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2010. "Testing whether two-stage estimation is meaningful in non-parametric models of production," LIDAM Discussion Papers ISBA 2010031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    9. Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
    10. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    11. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    12. Van Keilegom, Ingrid & Vanhems, Anne, 2011. "Semiparametric transformation model with endogeneity: a control function approach," TSE Working Papers 11-243, Toulouse School of Economics (TSE).
    13. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    14. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    15. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    16. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    17. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    18. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    19. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2010. "Nonparametric regression with nonparametrically generated covariates," SFB 649 Discussion Papers 2010-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    21. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    22. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    23. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    24. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    25. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    26. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    27. Neumeyer, Natalie, 2009. "Testing independence in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1551-1566, August.
    28. Simar, Léopold & Wilson, Paul W., 2013. "Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives," Foundations and Trends(R) in Econometrics, now publishers, vol. 5(3–4), pages 183-337, June.
    29. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    30. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    31. Einmahl, J.H.J. & van Keilegom, I., 2006. "Tests for Independence in Nonparametric Regression," Discussion Paper 2006-80, Tilburg University, Center for Economic Research.
    32. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    33. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    34. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    35. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    36. Ruggiero, John, 1996. "On the measurement of technical efficiency in the public sector," European Journal of Operational Research, Elsevier, vol. 90(3), pages 553-565, May.
    37. Vanhems, Anne & Van Keilegom, Ingrid, 2013. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2013018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    38. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    39. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    40. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    41. Hlávka, Zdenek & Husková, Marie & Meintanis, Simos G., 2011. "Tests for independence in non-parametric heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 816-827, April.
    42. repec:fth:prinin:455 is not listed on IDEAS
    43. Aly, Hassan Y, et al, 1990. "Technical, Scale, and Allocative Efficiencies in U.S. Banking: An Empirical Investigation," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 211-218, May.
    44. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    3. Camilla Mastromarco & Léopold Simar, 2015. "Effect of FDI and Time on Catching Up: New Insights from a Conditional Nonparametric Frontier Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 826-847, August.
    4. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    5. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    6. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    7. Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
    8. Jose M. Cordero & Francisco Pedraja-Chaparro & Elsa C. Pisaflores & Cristina Polo, 2017. "Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach," Journal of Productivity Analysis, Springer, vol. 48(1), pages 1-24, August.
    9. Mastromarco, Camilla & Simar, Léopold, 2018. "Globalization and productivity: A robust nonparametric world frontier analysis," Economic Modelling, Elsevier, vol. 69(C), pages 134-149.
    10. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    11. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    12. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    13. Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.
    14. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    15. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    16. Cordero, Jose Manuel & Polo, Cristina & Simancas, Rosa, 2022. "Assessing the efficiency of secondary schools: Evidence from OECD countries participating in PISA 2015," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    17. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    18. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    19. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    20. Polemis, Michael L. & Tzeremes, Nickolaos G., 2019. "Competitive conditions and sectors’ productive efficiency: A conditional non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1104-1118.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2016007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.