IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i2p762-768.html
   My bibliography  Save this article

Bounded rationality and thick frontiers in stochastic frontier analysis

Author

Listed:
  • Tsionas, Mike G.

Abstract

Recent research has proposed a statistical test based on the notion that agents have bounded rationality, if and only if more attractive states are chosen with larger probability. We propose and implement a statistical test for bounded rationality in the context of stochastic cost frontiers. Bounded rationality is related to probabilistically cost-efficient distributions. The test is based on comparing a discrete set of probabilities with the theoretical distribution under bounded rationality. Implementation is shown to be quite easy in a Bayesian framework using the Bayes factor for model comparison between estimated and theoretical probabilities. The bounded-rationality model introduces only an extra parameter in frontier models and, therefore, it is quite practical to use in applications as a general semi-parametric model for inefficiency.

Suggested Citation

  • Tsionas, Mike G., 2020. "Bounded rationality and thick frontiers in stochastic frontier analysis," European Journal of Operational Research, Elsevier, vol. 284(2), pages 762-768.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:762-768
    DOI: 10.1016/j.ejor.2019.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719310112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    2. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    3. Filip Matêjka & Alisdair McKay, 2015. "Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model," American Economic Review, American Economic Association, vol. 105(1), pages 272-298, January.
    4. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    5. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    6. Hampf, Benjamin, 2017. "Rational Inefficiency. Adjustment Costs and Sequential Technologies," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 92488, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    8. Mattsson, Lars-Goran & Weibull, Jorgen W., 2002. "Probabilistic choice and procedurally bounded rationality," Games and Economic Behavior, Elsevier, vol. 41(1), pages 61-78, October.
    9. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    10. Allen N. Berger & David B. Humphrey, 1992. "Measurement and Efficiency Issues in Commercial Banking," NBER Chapters, in: Output Measurement in the Service Sectors, pages 245-300, National Bureau of Economic Research, Inc.
    11. Ubøe, Jan & Andersson, Jonas & Jörnsten, Kurt & Lillestøl, Jostein & Sandal, Leif, 2017. "Statistical testing of bounded rationality with applications to the newsvendor model," European Journal of Operational Research, Elsevier, vol. 259(1), pages 251-261.
    12. Jiang, Zhong-Zhong & Fang, Shu-Cherng & Fan, Zhi-Ping & Wang, Dingwei, 2013. "Selecting optimal selling format of a product in B2C online auctions with boundedly rational customers," European Journal of Operational Research, Elsevier, vol. 226(1), pages 139-153.
    13. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    14. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    15. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Vouldis, Angelos T. & Konstantakis, Konstantinos N., 2015. "Global approximation to arbitrary cost functions: A Bayesian approach with application to US banking," European Journal of Operational Research, Elsevier, vol. 241(1), pages 148-160.
    16. Lv, Wei & Li, Hongyi & Tang, Jiafu, 2017. "Bargaining model of labor disputes considering social mediation and bounded rationalityAuthor-Name: Liu, Dehai," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1064-1071.
    17. Anas, Alex, 1983. "Discrete choice theory, information theory and the multinomial logit and gravity models," Transportation Research Part B: Methodological, Elsevier, vol. 17(1), pages 13-23, February.
    18. Barucci, Emilio & Landi, Leonardo, 1996. "Speculative dynamics with bounded rationality learning," European Journal of Operational Research, Elsevier, vol. 91(2), pages 284-300, June.
    19. Emir Malikov & Subal C. Kumbhakar & Mike G. Tsionas, 2016. "A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of us Banks in 2001–2010," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1407-1429, November.
    20. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    21. Stigler, George J, 1976. "The Xistence of X-Efficiency," American Economic Review, American Economic Association, vol. 66(1), pages 213-216, March.
    22. Chia -Yen Lee & Andrew L. Johnson, 2015. "Measuring Efficiency in Imperfectly Competitive Markets: An Example of Rational Inefficiency," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 702-722, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    2. Tsionas, Mike G., 2023. "Combining data envelopment analysis and stochastic frontiers via a LASSO prior," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1158-1166.
    3. Ubøe, Jan & Andersson, Jonas & Jörnsten, Kurt & Lillestøl, Jostein & Sandal, Leif, 2017. "Statistical testing of bounded rationality with applications to the newsvendor model," European Journal of Operational Research, Elsevier, vol. 259(1), pages 251-261.
    4. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    5. Braathen, Christian & Thorsen, Inge & Ubøe, Jan, 2022. "Adjusting for Cell Suppression in Commuting Trip Data," Discussion Papers 2022/13, Norwegian School of Economics, Department of Business and Management Science.
    6. Andersson, Jonas & Jörnsten, Kurt & Lillestøl, Jostein & Ubøe, Jan, 2019. "Analyzing learning effects in the newsvendor model by probabilistic methods," Discussion Papers 2019/13, Norwegian School of Economics, Department of Business and Management Science.
    7. Tsionas, Mike G. & Andrikopoulos, Athanasios, 2020. "On a High-Dimensional Model Representation method based on Copulas," European Journal of Operational Research, Elsevier, vol. 284(3), pages 967-979.
    8. Lindbeck, Assar & Weibull, Jörgen, 2020. "Delegation of investment decisions, and optimal remuneration of agents," European Economic Review, Elsevier, vol. 129(C).
    9. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    10. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).
    11. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    12. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    13. James Costain & Anton Nakov, 2019. "Logit Price Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 43-78, February.
    14. Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
    15. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    16. Costain, James & Nakov, Anton, 2015. "Precautionary price stickiness," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 218-234.
    17. Mogens Fosgerau & Julien Monardo & André de Palma, 2024. "The Inverse Product Differentiation Logit Model," American Economic Journal: Microeconomics, American Economic Association, vol. 16(4), pages 329-370, November.
    18. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    19. Filip Matêjka & Alisdair McKay, 2015. "Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model," American Economic Review, American Economic Association, vol. 105(1), pages 272-298, January.
    20. Njuki, Eric & Bravo-Ureta, Boris, 2014. "A Bayesian Approach to Analyzing the Economic Costs of Environmental Regulation in U.S. Dairy Farming," Working Papers 33, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:762-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.