IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2024021.html
   My bibliography  Save this paper

European option pricing with model constrained Gaussian process regressions

Author

Listed:
  • Hainaut, Donatien

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Vrins, Frédéric

    (Université catholique de Louvain, LIDAM/LFIN, Belgium)

Abstract

We propose a method for pricing European options based on Gaussian processes. We convert the problem of solving the Feynman-Kac (FK) partial differential equation (PDE) into a model-constrained regression. We form two training sets by sampling state variables from the PDEs inner domain and terminal boundary. The regression function is then estimated to fit the option payoffs on the boundary sample while satisfying the FK PDE on the inner sample. We adopt a Bayesian framework in which payoffs and the value of the FK PDE in the boundary and inner samples are noised. Assuming the regression function is a Gaussian process, we find a closed- form approximation for the option prices. We demonstrate the performance of the procedure on call options in the Heston model and basket call options in a Black- Scholes market.

Suggested Citation

  • Hainaut, Donatien & Vrins, Frédéric, 2024. "European option pricing with model constrained Gaussian process regressions," LIDAM Discussion Papers ISBA 2024021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2024021
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A292395/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    2. St'ephane Cr'epey & Matthew Dixon, 2019. "Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations," Papers 1901.11081, arXiv.org, revised Oct 2019.
    3. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    4. Joan Gonzalvez & Edmond Lezmi & Thierry Roncalli & Jiali Xu, 2019. "Financial Applications of Gaussian Processes and Bayesian Optimization," Papers 1903.04841, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    2. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    3. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    4. Taco de Wolff & Alejandro Cuevas & Felipe Tobar, 2020. "Gaussian process imputation of multiple financial series," Papers 2002.05789, arXiv.org.
    5. Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    6. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    7. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
    8. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    9. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    10. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Ali Hirsa & Tugce Karatas & Amir Oskoui, 2019. "Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes," Papers 1902.05810, arXiv.org.
    12. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    13. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    14. Trent Spears & Stefan Zohren & Stephen Roberts, 2020. "Investment sizing with deep learning prediction uncertainties for high-frequency Eurodollar futures trading," Papers 2007.15982, arXiv.org.
    15. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    16. Chuhao Sun & Asaf Cohen & James Stokes & Shravan Veerapaneni, 2023. "Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations," Papers 2311.12239, arXiv.org.
    17. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    18. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    19. Emmanuil H. Georgoulis & Antonis Papapantoleon & Costas Smaragdakis, 2024. "A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models," Papers 2401.06740, arXiv.org.
    20. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2024021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.