Feature Selection in metabolomics with PLS-derived methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Feraud, Baptiste & Munaut, Carine & Martin, Manon & Verleysen, Michel & Govaerts, Bernadette, 2017. "Combining strong sparsity and competitive predictive power with the L-sOPLS approach for biomarker discovery in metabolomics," LIDAM Reprints ISBA 2017045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Prasad Naik & Chih‐Ling Tsai, 2000. "Partial least squares estimator for single‐index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 763-771.
- Marine Jeanmougin & Aurelien de Reynies & Laetitia Marisa & Caroline Paccard & Gregory Nuel & Mickael Guedj, 2010. "Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
- Feraud, Baptiste & Munaut, Carine & Martin, Manon & Verleysen, Michel & Govaerts, Bernadette, 2017. "Combining strong sparsity and competitive predictive power with the L-sOPLS approach for biomarker discovery in metabolomics," LIDAM Discussion Papers ISBA 2017020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
- Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
- Feraud, Baptiste & Leenders, Justine & Martineau, Estelle & Giraudeau, Patrick & Govaerts, Bernadette & de Tullio, Pascal, 2018. "Two data pre-processing workflows to facilitate the discovery of biomarkers by 2D NMR metabolomics," LIDAM Discussion Papers ISBA 2018016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Vanessa R. Marcelino & Caitlin Welsh & Christian Diener & Emily L. Gulliver & Emily L. Rutten & Remy B. Young & Edward M. Giles & Sean M. Gibbons & Chris Greening & Samuel C. Forster, 2023. "Disease-specific loss of microbial cross-feeding interactions in the human gut," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015.
"Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
- Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2012. "Sparse partial least squares in time series for macroeconomic forecasting," DES - Working Papers. Statistics and Econometrics. WS ws122216, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Matthew S. Bramble & Victor Fourcassié & Neerja Vashist & Florence Roux-Dalvai & Yun Zhou & Guy Bumoko & Michel Lupamba Kasendue & D’Andre Spencer & Hilaire Musasa Hanshi-Hatuhu & Vincent Kambale-Mast, 2024. "Glutathione peroxidase 3 is a potential biomarker for konzo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
- Tommaso Proietti, 2016.
"On the Selection of Common Factors for Macroeconomic Forecasting,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628,
Emerald Group Publishing Limited.
- Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, Department of Economics and Business Economics, Aarhus University.
- Alessandro Giovannelli & Tommaso Proietti, 2015. "On the Selection of Common Factors for Macroeconomic Forecasting," CEIS Research Paper 332, Tor Vergata University, CEIS, revised 12 Mar 2015.
- Giovannelli, Alessandro & Proietti, Tommaso, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," MPRA Paper 60673, University Library of Munich, Germany.
- Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
- Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
- Zhang Yuping & Tibshirani Robert J. & Davis Ronald W., 2010. "Predicting Patient Survival from Longitudinal Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-23, November.
- Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
- Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
- Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
- Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
- Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
- Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
- Cubadda, Gianluca & Guardabascio, Barbara, 2012.
"A medium-N approach to macroeconomic forecasting,"
Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
- Gianluca Cubadda & Barbara Guardabascio, 2010. "A Medium-N Approach to Macroeconomic Forecasting," CEIS Research Paper 176, Tor Vergata University, CEIS, revised 09 Dec 2010.
- Ren, Shoujia & Guo, Bin & Wang, Zhijun & Wang, Juan & Fang, Quanxiao & Wang, Jianlin, 2022. "Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress," Agricultural Water Management, Elsevier, vol. 261(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2019020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.