IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006107.html
   My bibliography  Save this article

Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress

Author

Listed:
  • Ren, Shoujia
  • Guo, Bin
  • Wang, Zhijun
  • Wang, Juan
  • Fang, Quanxiao
  • Wang, Jianlin

Abstract

Soil moisture (SM) is an important indicator of the photosynthetic rate and growth status of crops. A few related parameters, such as the red-edge parameters and spectral indices, have been adopted for retrieving the SM of winter wheat. To further study their abilities to detect the SM, field-scale water stress experiments on winter wheat were conducted during the 2018/19 growing season. The spectral ratio index in the near-infrared (NIR) shoulder region (NSRI) (700–1100 nm) was selected by comparing the correlations between the SM and the red edge parameters and spectral indices, and it was optimized using the partial least squares regression (PLSR) method. To assess the performance of the sensitive wavebands of the NSRI in retrieving the SM, three types of spectral index models were established using multiple linear regression (MLR) for the winter wheat from the jointing to the ripening stage. The results indicate that the red-edge parameters are more sensitive to the spectral variation during the jointing and flowering stages. The sensitivity decreased with increasing water stress. The red-edge area (SDr) of winter wheat irrigated in the flowering stage (D1 treatment) and irrigated in the jointing stage (D2 treatment) decreased by 20–30%, respectively. In general, all of the parameters and indices were correlated with the surface SM (0–40 cm depth), especially for the NSRI, with a significant coefficient of determination (R2) of 0.52 in the 10–20 cm depth interval (P < 0.01). Moreover, all of the spectral index models based on the optimized NSRI have good capabilities for retrieving the SM in the jointing stage. The model for one derivative of the logarithm of the NSRI (logarithmic NSRI)' performed best, with R2 and root mean square error (RMSE) values of 0.81–0.92 and 0.17–0.89%, respectively. Finally, the (logarithmic NSRI)' model was used to retrieve the SM in the flowering–ripening stage (R2 =0.85). Overall, the optimized spectral index models can accurately and quickly retrieve the SM and can assist in predicting the effect of drought on the crop yield in the future.

Suggested Citation

  • Ren, Shoujia & Guo, Bin & Wang, Zhijun & Wang, Juan & Fang, Quanxiao & Wang, Jianlin, 2022. "Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006107
    DOI: 10.1016/j.agwat.2021.107333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Zhigong & Lin, Shaozhe & Zhang, Baozhong & Wei, Zheng & Liu, Lu & Han, Nana & Cai, Jiabing & Chen, He, 2020. "Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Xindong Wei & Ning Wang & Pingping Luo & Jie Yang & Jian Zhang & Kangli Lin, 2021. "Spatiotemporal Assessment of Land Marketization and Its Driving Forces for Sustainable Urban–Rural Development in Shaanxi Province in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    3. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    4. Bai, Shanshan & Kang, Yaohu & Wan, Shuqin, 2020. "Drip fertigation regimes for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    3. Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
    4. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    5. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    6. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    7. Jasmit Shah & Somnath Datta & Susmita Datta, 2014. "A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics," Computational Statistics, Springer, vol. 29(6), pages 1749-1767, December.
    8. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    9. Kapetanios, George & Price, Simon & Young, Garry, 2018. "A UK financial conditions index using targeted data reduction: Forecasting and structural identification," Econometrics and Statistics, Elsevier, vol. 7(C), pages 1-17.
    10. Lili Liu & Meng Chen & Pingping Luo & Maochuan Hu & Weili Duan & Ahmed Elbeltagi, 2023. "A Novel Integrated Spatiotemporal-Variable Model of Landscape Changes in Traditional Villages in the Jinshaan Gorge, Yellow River Basin," Land, MDPI, vol. 12(9), pages 1-28, August.
    11. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    12. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    13. Shin, Seung Jun & Artemiou, Andreas, 2017. "Penalized principal logistic regression for sparse sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 48-58.
    14. Yang Wang & Remina Shataer & Tingting Xia & Xueer Chang & Hui Zhen & Zhi Li, 2021. "Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    15. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    16. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    17. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    18. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2019. "Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 715-733, November.
    19. Luo, Ruiyan & Qi, Xin, 2017. "Signal extraction approach for sparse multivariate response regression," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 83-97.
    20. Stamer, Vincent, 2022. "Thinking Outside the Container: A Sparse Partial Least Squares Approach to Forecasting Trade Flows," VfS Annual Conference 2022 (Basel): Big Data in Economics 264096, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.