IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52136-5.html
   My bibliography  Save this article

Glutathione peroxidase 3 is a potential biomarker for konzo

Author

Listed:
  • Matthew S. Bramble

    (Children’s National Hospital
    The George Washington University of Medicine and Health Sciences)

  • Victor Fourcassié

    (CHU de Québec - Université Laval Research Center)

  • Neerja Vashist

    (UCLA)

  • Florence Roux-Dalvai

    (CHU de Québec - Université Laval Research Center)

  • Yun Zhou

    (Children’s National Hospital)

  • Guy Bumoko

    (Kinshasa University)

  • Michel Lupamba Kasendue

    (Institut National de Recherche Biomédicale (INRB))

  • D’Andre Spencer

    (Children’s National Hospital)

  • Hilaire Musasa Hanshi-Hatuhu

    (Kinshasa University
    Institut National de Recherche Biomédicale (INRB))

  • Vincent Kambale-Mastaki

    (Institut National de Recherche Biomédicale (INRB))

  • Rafael Vincent M. Manalo

    (University of the Philippines, Manila, Ermita)

  • Aliyah Mohammed

    (Children’s National Hospital)

  • David R. McIlwain

    (University of Nevada, Reno School of Medicine)

  • Gary Cunningham

    (Children’s National Hospital)

  • Marshall Summar

    (Children’s National Hospital)

  • Michael J. Boivin

    (Michigan State University)

  • Ljubica Caldovic

    (Children’s National Hospital
    The George Washington University of Medicine and Health Sciences)

  • Eric Vilain

    (University of California)

  • Dieudonne Mumba-Ngoyi

    (Institut National de Recherche Biomédicale (INRB))

  • Desire Tshala-Katumbay

    (Institut National de Recherche Biomédicale (INRB)
    Oregon Health & Science University)

  • Arnaud Droit

    (CHU de Québec - Université Laval Research Center)

Abstract

Konzo is a neglected paralytic neurological disease associated with food (cassava) poisoning that affects the world’s poorest children and women of childbearing ages across regions of sub-Saharan Africa. Despite understanding the dietary factors that lead to konzo, the molecular markers and mechanisms that trigger this disease remain unknown. To identify potential protein biomarkers associated with a disease status, plasma was collected from two independent Congolese cohorts, a discovery cohort (n = 60) and validation cohort (n = 204), sampled 10 years apart and subjected to multiple high-throughput assays. We identified that Glutathione Peroxidase 3 (GPx3), a critical plasma-based antioxidant enzyme, was the sole protein examined that was both significantly and differentially abundant between affected and non-affected participants in both cohorts, with large reductions observed in those affected with konzo. Our findings raise the notion that reductions in key antioxidant mechanisms may be the biological risk factor for the development of konzo, particularly those mediated through pathways involving the glutathione peroxidase family.

Suggested Citation

  • Matthew S. Bramble & Victor Fourcassié & Neerja Vashist & Florence Roux-Dalvai & Yun Zhou & Guy Bumoko & Michel Lupamba Kasendue & D’Andre Spencer & Hilaire Musasa Hanshi-Hatuhu & Vincent Kambale-Mast, 2024. "Glutathione peroxidase 3 is a potential biomarker for konzo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52136-5
    DOI: 10.1038/s41467-024-52136-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52136-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52136-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew S. Bramble & Neerja Vashist & Arthur Ko & Sambhawa Priya & Céleste Musasa & Alban Mathieu & D’ Andre Spencer & Michel Lupamba Kasendue & Patrick Mamona Dilufwasayo & Kevin Karume & Joanna Nsib, 2021. "The gut microbiome in konzo," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanessa R. Marcelino & Caitlin Welsh & Christian Diener & Emily L. Gulliver & Emily L. Rutten & Remy B. Young & Edward M. Giles & Sean M. Gibbons & Chris Greening & Samuel C. Forster, 2023. "Disease-specific loss of microbial cross-feeding interactions in the human gut," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    3. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Fahad Paryani & Ji-Sun Kwon & Christopher W. Ng & Kelly Jakubiak & Nacoya Madden & Kenneth Ofori & Alice Tang & Hong Lu & Shengnan Xia & Juncheng Li & Aayushi Mahajan & Shawn M. Davidson & Anna O. Bas, 2024. "Multi-omic analysis of Huntington’s disease reveals a compensatory astrocyte state," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Martin, Manon & Govaerts, Bernadette, 2019. "Feature Selection in metabolomics with PLS-derived methods," LIDAM Discussion Papers ISBA 2019020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Gaoxiang Zhu & Dengfeng Gao & Linzi Li & Yixuan Yao & Yingjie Wang & Minglei Zhi & Jinying Zhang & Xinze Chen & Qianqian Zhu & Jie Gao & Tianzhi Chen & Xiaowei Zhang & Tong Wang & Suying Cao & Aijin M, 2023. "Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Tomás Clive Barker-Tejeda & Elisa Zubeldia-Varela & Andrea Macías-Camero & Lola Alonso & Isabel Adoración Martín-Antoniano & María Fernanda Rey-Stolle & Leticia Mera-Berriatua & Raphaëlle Bazire & Pau, 2024. "Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Signe Schmidt Kjølner Hansen & Robert Krautz & Daria Rago & Jesper Havelund & Arnaud Stigliani & Nils J. Færgeman & Audrey Prézelin & Julie Rivière & Anne Couturier-Tarrade & Vyacheslav Akimov & Blago, 2024. "Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    9. Gaowen Yang & Masahiro Ryo & Julien Roy & Daniel R. Lammel & Max-Bernhard Ballhausen & Xin Jing & Xuefeng Zhu & Matthias C. Rillig, 2022. "Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Hannah Voß & Simon Schlumbohm & Philip Barwikowski & Marcus Wurlitzer & Matthias Dottermusch & Philipp Neumann & Hartmut Schlüter & Julia E. Neumann & Christoph Krisp, 2022. "HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Oto Hanuš & Eva Samková & Jindřich Čítek & Hana Nejeschlebová & Eva Dadáková & Lucie Hasoňová & Michael Rost & Irena Němečková & Karolína Reindl & Markéta Borková & Ondřej Elich, 2024. "The stability of fatty acids in yoghurts produced from bulk milk samples intentionally selected according to dairy production systems," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 69(8), pages 303-316.
    12. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Yechun Hong & Zongjun Yu & Qian Zhou & Chunyu Chen & Yuqiong Hao & Zhen Wang & Jian-Kang Zhu & Hongwei Guo & Ancheng C. Huang, 2024. "NAD+ deficiency primes defense metabolism via 1O2-escalated jasmonate biosynthesis in plants," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Shweta Godbole & Hannah Voß & Antonia Gocke & Simon Schlumbohm & Yannis Schumann & Bojia Peng & Martin Mynarek & Stefan Rutkowski & Matthias Dottermusch & Mario M. Dorostkar & Andrey Korshunov & Thoma, 2024. "Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52136-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.